Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra đội tuyển HSG Toán năm 2021 - 2022 trường chuyên Vị Thanh - Hậu Giang

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề kiểm tra chất lượng đội tuyển học sinh giỏi môn Toán THPT năm học 2021 – 2022 trường THPT chuyên Vị Thanh, tỉnh Hậu Giang; kỳ thi được diễn ra vào ngày 01 tháng 03 năm 2022; đề thi có đáp án và thang điểm. Trích dẫn đề kiểm tra đội tuyển HSG Toán năm 2021 – 2022 trường chuyên Vị Thanh – Hậu Giang : + Có 30 tấm thẻ đánh số từ 1 đến 30. Chọn ngẫu nhiên ra 10 tấm thẻ. Tính xác suất để có 5 tấm thẻ mang số lẻ, 5 tấm thẻ mang số chẵn trong đó chỉ có đúng 1 tấm chia hết cho 10? + Trong mặt phẳng Oxy, biết một cạnh tam giác có trung điểm là M 1 1; hai cạnh kia nằm trên các đường thẳng 2 6 30 x y và x t 2 t y t. Hãy viết phương trình tham số của cạnh thứ ba của tam giác đó? + Cho hình chóp S ABCD có đáy là hình chữ nhật với AD a 3 AB 2a. Tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy. Góc giữa SD và mặt phẳng ABCD bằng 0 45. Tính khoảng cách giữa hai đường thẳng SD và BC.

Nguồn: toanmath.com

Đọc Sách

Đề thi chọn học sinh giỏi lớp 12 môn Toán năm học 2016 2017 sở GD và ĐT Ninh Bình
Nội dung Đề thi chọn học sinh giỏi lớp 12 môn Toán năm học 2016 2017 sở GD và ĐT Ninh Bình Bản PDF Đề thi chọn học sinh giỏi Toán lớp 12 năm học 2016 – 2017 sở GD và ĐT Ninh Bình gồm 2 phần: + Phần trắc nghiệm: 40 câu + Phần tự luận: 4 câu
Đề thi tháng lần 2 lớp 12 môn Toán năm 2023 2024 trường THPT Ngô Sĩ Liên Bắc Giang
Nội dung Đề thi tháng lần 2 lớp 12 môn Toán năm 2023 2024 trường THPT Ngô Sĩ Liên Bắc Giang Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi tháng lần 2 môn Toán lớp 12 năm học 2023 – 2024 trường THPT Ngô Sĩ Liên, tỉnh Bắc Giang; kỳ thi được diễn ra vào ngày 30 tháng 12 năm 2024; đề thi có đáp án trắc nghiệm mã đề 101. Trích dẫn Đề thi tháng lần 2 Toán lớp 12 năm 2023 – 2024 trường THPT Ngô Sĩ Liên – Bắc Giang : + Trong không gian Oxyz cho tứ diện ABCD có A B C D. Trên các cạnh AB AC AD lần lượt lấy các điểm BCD sao cho 4 AB AC AD AB AC AD. Viết phương trình mặt phẳng BCD biết tứ diện A B C D có thể tích nhỏ nhất. + Một khối trụ có đường cao bằng 5, chu vi của thiết diện qua trục gấp 3 lần đường kính đáy. Thể tích của khối trụ bằng? + Cho hàm số 4 2 fx 32 4. Có bao nhiêu giá trị nguyên của tham số m sao cho ứng với mỗi m tổng giá trị các nghiệm phân biệt thuộc khoảng (−4;1) của phương trình 2 fx m 4 5 bằng -8? File WORD (dành cho quý thầy, cô):