Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát chất lượng lớp 9 môn Toán năm 2018 2019 phòng GD ĐT Ba Đình Hà Nội

Nội dung Đề khảo sát chất lượng lớp 9 môn Toán năm 2018 2019 phòng GD ĐT Ba Đình Hà Nội Bản PDF - Nội dung bài viết Đề khảo sát chất lượng môn Toán lớp 9 năm 2018-2019 phòng GD ĐT Ba Đình Hà Nội Đề khảo sát chất lượng môn Toán lớp 9 năm 2018-2019 phòng GD ĐT Ba Đình Hà Nội Ngày 07 tháng 05 năm 2019, phòng Giáo dục và Đào tạo quận Ba Đình, Hà Nội đã tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 9 năm học 2018 - 2019. Kỳ thi nhằm mục đích giúp học sinh rèn luyện thường xuyên để củng cố và nâng cao kiến thức Toán THCS, chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 môn Toán năm học 2019 - 2020. Đề khảo sát chất lượng Toán lớp 9 năm 2018-2019 phòng GD&ĐT Ba Đình - Hà Nội được biên soạn dưới dạng tự luận, bao gồm 1 trang với 6 bài toán. Học sinh được cấp 90 phút (không tính thời gian giám thị coi thi phát đề) để hoàn thành bài thi khảo sát chất lượng môn Toán lớp 9. Trích dẫn đề khảo sát chất lượng Toán lớp 9 năm 2018-2019 phòng GD&ĐT Ba Đình - Hà Nội: Một phòng họp có 300 ghế ngồi, được xếp thành một số hàng có số ghế bằng nhau. Buổi họp có 378 người tham dự, ban tổ chức đã kê thêm 3 hàng ghế và mỗi hàng phải xếp thêm 1 ghế, mới đủ chỗ ngồi. Hỏi lúc đầu phòng họp có bao nhiêu hàng ghế và mỗi hàng ghế có bao nhiêu ghế, biết số hàng ghế ban đầu không vượt quá 20. Cho phương trình: x^2 - (x - 3)x - m + 2 = 0 (x là ẩn số). (a) Chứng minh rằng phương trình luôn có nghiệm với mọi giá trị của m. (b) Tìm m để phương trình có ít nhất một nghiệm dương. Cho đường tròn (O;R) và dây BC cố định (BC < 2R), BF là đường kính. A là điểm di chuyển trên cung lớn BC (A khác B, C) sao cho tam giác ABC có ba góc nhọn. Các đường cao AD và CE của tam giác ABC cắt nhau tại H. (1) Chứng minh tứ giác AEDC là tứ giác nội tiếp. (2) Chứng minh HF đi qua trung điểm G của đoạn thẳng AC. (3) Chứng minh AF/sinDEC không đổi. (4) Cho BC = 1,5R; gọi I là hình chiếu của G trên AB. Hãy tính bán kính đường tròn ngoại tiếp tam giác IBC theo R.

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát Toán 9 tháng 11 năm 2023 - 2024 trường THCS Ngọc Thụy - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng môn Toán 9 tháng 11 năm học 2023 – 2024 trường THCS Ngọc Thụy, quận Long Biên, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Tư ngày 29 tháng 11 năm 2023. Trích dẫn Đề khảo sát Toán 9 tháng 11 năm 2023 – 2024 trường THCS Ngọc Thụy – Hà Nội : + Giải bài toán sau bằng cách lập phương trình: Hưởng ứng 20 năm thành lập quận Long Biên, phường Ngọc Thụy tổ chức liên hoan nghệ thuật, văn nghệ, các tiết mục được chiếu trên màn hình LED ngoài trời, màn hình có dạng hình chữ nhật với chu vi là 28 m, độ dài đường chéo là 106 m. Tính diện tích màn hình LED? + Các tia nắng mặt trời tạo với mặt đất một góc xấp xỉ bằng 30° và bóng của một tháp trên mặt đất dài 92m. Tính chiều cao của tháp. (Kết quả làm tròn đến chữ số thập phân thứ 2). + Từ điểm M nằm ngoài đường tròn (O;R) kẻ các tiếp tuyến MP và MQ với đường tròn (O;R), (P và Q là các tiếp điểm). Kẻ đường kính POA. Tiếp tuyến tại A với đường tròn (O;R) cắt PQ tại B. 1) Chứng minh bốn điểm M, P, O, Q cùng thuộc một đường tròn đường kính OM. 2) Gọi K là trung điểm của MO, tia PK cắt AQ tại I. Chứng minh PQ.PB = 4R2 và QBO = QAM. 3) Cho Q di động trên nửa đường tròn, kẻ QH vuông góc với AP (H thuộc AP), gọi r1, r2, r3 tương ứng là bán kính đường tròn nội tiếp các tam giác APQ, AQH, PQH. Tìm vị trí của M sao cho S = r1 + r2 + r3 đạt giá trị lớn nhất.
Đề khảo sát Toán 9 tháng 11 năm 2023 - 2024 trường THCS Trưng Vương - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán 9 tháng 11 năm học 2023 – 2024 trường THCS Trưng Vương, thành phố Hà Nội. Trích dẫn Đề khảo sát Toán 9 tháng 11 năm 2023 – 2024 trường THCS Trưng Vương – Hà Nội : + Trong mặt phẳng tọa độ Oxy cho hai đường thẳng: (d1): y = (m2 − 1)x + 2 (1) và (d2): y = x + 2 (2). 1) Tìm m để hàm số (1) là một hàm số bậc nhất một ẩn. 2) Vẽ đồ thị hàm số (2) và tính khoảng cách từ gốc tọa độ O đến đường thẳng (d). 3) Tìm m để (d1), (d2) và trục hoành cắt nhau tạo thành một tam giác vuông cân. + Cột cờ trước lăng Chủ Tịch Hồ Chí Minh có bóng dài gần 40m, tại thời điểm đó người ta quan sát được góc tạo bởi tia nắng mặt trời và phương ngang của mặt đất xấp xỉ 36. Hỏi cột cờ cao khoảng bao nhiêu? (làm tròn kết quả đến mét). + Cho tam giác ABC vuông tại A, đường cao AH. Vẽ đường tròn (A; AH). Kẻ các tiếp tuyến BD, CE với đường tròn (D, E là các tiếp điểm khác H). a) Chứng minh bốn điểm A, H, C, E cùng thuộc một đường tròn. b) Chứng minh AH2 = BD.CE và DE là tiếp tuyến đường tròn đường kính BC. c) Kẻ đường cao HK của tam giác HDE cắt BE tại I. Chứng minh I là trung điểm của HK.
Đề khảo sát Toán 9 tháng 11 năm 2023 trường THCS Bế Văn Đàn - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán 9 tháng 11 năm học 2023 – 2024 trường THCS Bế Văn Đàn, thành phố Hà Nội; đề thi gồm 01 trang, hình thức tự luận với 05 bài toán, thời gian làm bài 120 phút.
Đề kiểm tra Toán 9 năm 2023 - 2024 trường THPT chuyên Hà Nội - Amsterdam
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra chất lượng môn Toán 9 năm học 2023 – 2024 trường THPT chuyên Hà Nội – Amsterdam, thành phố Hà Nội. Trích dẫn Đề kiểm tra Toán 9 năm 2023 – 2024 trường THPT chuyên Hà Nội – Amsterdam : + Hưởng ứng phong trào “Vì biển đảo Trường Sa” một đôi tàu dự định chở 280 tấn hàng ra đảo. Nhưng khi chuẩn bị khởi hành thì số hàng hóa đã tăng thêm 6 tấn so với dự định, vì vậy đội tàu phải bổ sung thêm 1 tàu và mỗi tàu chở ít hơn dự định 2 tấn hàng. Hỏi khi dự định đội tàu có bao nhiêu chiếc tàu, biết các tàu chở số tấn hàng bằng nhau? + Cho biết một cái thang có chiều dài 4,8m dựa vào tường làm thành một góc 58° so với mặt đất (như hình vẽ). Tính chiều cao của thang so với mặt đất (kết quả làm tròn đến hai chữ số thập phân). + Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d): y = mx – 2. a) Gọi A là giao điểm của đường thẳng (d) và trục Oy. Tìm tọa độ của điểm A. b) Tìm tất cả các giá trị của m để đường thẳng (d) cắt trục Ox tại điểm B sao cho diện tích tam giác OAB bằng 8.