Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán THPT Quốc gia 2020 lần 1 trường Lương Thế Vinh - Hà Nội

Thi thử THPT Quốc gia là kỳ thi không thể thiếu đối với học sinh khối 12, nhằm tạo ra cho các em một kỳ thi tương tự như kỳ thi chính thức THPT Quốc gia, để các em được làm quen và thử sức. Vừa qua, trường THPT Lương Thế Vinh, thành phố Hà Nội đã tổ chức kỳ thi thử Trung học Phổ thông Quốc gia môn Toán năm học 2019 – 2020 lần thứ nhất. Đề thi thử Toán THPT Quốc gia 2020 lần 1 trường Lương Thế Vinh – Hà Nội gồm có bốn mã đề: 111, 132, 167, 189; đề có hình thức tương tự với các đề thi THPT Quốc gia môn Toán trước đây, nội dung thi giới hạn ở những kiến thức mà học sinh đã được học, bao gồm cả chương trình Toán lớp 10 và lớp 11; đề thi có đáp án và lời giải chi tiết đầy đủ các mã đề. [ads] Trích dẫn đề thi thử Toán THPT Quốc gia 2020 lần 1 trường Lương Thế Vinh – Hà Nội : + Bạn An có một cốc giấy hình nón với đường kính đáy là 10cm và độ dài đường sinh là 8cm. Bạn dự định đựng một viên kẹo hình cầu sao cho toàn bộ viên kẹo nằm trong cốc (không phần nào của viên kẹo cao hơn miệng cốc). Hỏi bạn An có thể đựng được viên kẹo có đường kính lớn nhất bằng bao nhiêu? + Cho hình hộp ABCD.A0B0C0D0 có đáy ABCD là hình bình hành tâm O và AD = 2AB = 2a; cos(AOB) = 3/5. Gọi E, F lần lượt là trung điểm của BC và AD. Biết rằng CD0 ⊥ CF; BB0 ⊥ ED và khoảng cách giữa hai đường thẳng CD và AA0 là a√3, tính thể tích khối hộp ABCD.A0B0C0D0. + Trong không gian với hệ trục tọa độ Oxyz, cho điểm A (3; −2; −2) và mặt phẳng (P): x − y − z + 1 = 0. Mặt phẳng (Q): ax + by + cz + d = 0 đi qua A, vuông góc với mặt phẳng (P) và (Q) cắt hai tia Oy, Oz lần lượt tại hai điểm phân biệt M, N sao cho OM = ON (O là gốc tọa độ). Tìm d/a. + Trong các mệnh đề sau, mệnh đề nào đúng? A. Đồ thị của hai hàm số y = 2^x và y = 1/2^x đối xứng nhau qua trục hoành. B. Đồ thị của hai hàm số y = 2^x và y = log2 x x đối xứng nhau qua đường thẳng y = −x. C. Đồ thị của hai hàm số y = log2 x và y = log2 1/x đối xứng nhau qua trục tung. D. Đồ thị của hai hàm số y = 2^x và y = log2 x đối xứng nhau qua đường thẳng y = x. + Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm M (1; 2; −4) và M0 (5; 4; 2). Biết rằng M0 là hình chiếu vuông góc của M lên mặt phẳng (α), khi đó mặt phẳng (α) có một véc tơ pháp tuyến là?

Nguồn: toanmath.com

Đọc Sách

Đề thi thử Toán THPT Quốc gia 2018 trường THPT chuyên Lê Khiết - Quảng Ngãi lần 2
Đề thi thử Toán THPT Quốc gia 2018 trường THPT chuyên Lê Khiết – Quảng Ngãi lần 2 mã đề 165 được biên soạn theo hình thức trắc nghiệm khách quan với 50 câu hỏi, thí sinh có 90 phút để làm bài thi, kỳ thi nhằm giúp học sinh hiểu được hình thức, quy chế kỳ thi, nắm được dạng đề và rèn luyện chuẩn bị cho kỳ thi chính thức THPTQG 2018 môn Toán, đề thi có đáp án và lời giải chi tiết . Trích dẫn đề thi thử Toán THPT Quốc gia 2018 : + Đội văn nghệ của nhà trường gồm 4 học sinh lớp 12A, 3 học sinh lớp 12B và 2 học sinh lớp 12C. Chọn ngẫu nhiên 5 học sinh từ đội văn nghệ để biểu diễn một tiết mục. Tính xác suất sao cho lớp nào cũng có học sinh được chọn và có ít nhất 2 học sinh lớp 12A. [ads] + Một loại virus có số lượng cá thể tăng trưởng mũ với tốc độ x%/h, tức là cứ sau 1 giờ thì số lượng của chúng tăng lên x%. Người ta thả vào ống nghiệm 20 cá thể, sau 53 giờ số lượng cá thể virus đếm được trong ống nghiệm là 1,2 triệu. Tìm x (tính chính xác đến hàng phần trăm). + Cho hình chóp tứ giác đều S.ABCD. Gọi M, N, P lần lượt là trung điểm của AB, AD, SC. Thiết diện tạo bởi mặt phẳng (MNP) và hình chóp S.ABCD chia khối chóp S.ABCD thành hai khối đa diện. Gọi k (k ≤ 1) là tỷ số thể tích giữa hai khối đa diện đó. Tính k.
Đề thi thử Toán THPT Quốc gia 2018 sở GD và ĐT Ninh Bình
Đề thi thử Toán THPT Quốc gia 2018 sở GD và ĐT Ninh Bình mã đề 004 được biên soạn theo hình thức trắc nghiệm với 50 câu hỏi, thí sinh làm bài trong khoảng thời gian 90 phút, kỳ thi được diễn ra tại các trường THPT trên địa bàn tỉnh Ninh Bình vào ngày 22 tháng 05 năm 2018, đề thi có đáp án .
Đề thi thử Toán THPTQG 2018 trường THPT Lương Thế Vinh - Hà Nội lần 3
Đề thi thử Toán THPTQG 2018 trường THPT Lương Thế Vinh – Hà Nội lần 3 mã đề 301 được biên soạn bám sát cấu trúc đề minh họa môn Toán 2018 của Bộ Giáo dục và Đào tạo nhằm giúp các em làm quen với cấu trúc đề thi và có cơ hội rèn luyện để chuẩn bị cho kỳ thi THPT Quốc gia 2018 môn Toán, đề thi có đáp án và lời giải chi tiết . Trích dẫn đề thi thử Toán THPTQG 2018 : + Một người gửi 100 triệu đồng vào ngân hàng theo hình thức lãi kép, kỳ hạn 1 năm với lãi suất 7% một năm. Hỏi sau bao nhiêu năm người gửi sẽ có ít nhất 200 triệu đồng từ số tiền gửi ban đầu (giả sử trong suốt quá trình gửi lãi suất không thay đổi và người gửi không rút tiền). [ads] + Cho đa giác đều 20 đỉnh. Trong các tứ giác có bốn đỉnh là đỉnh của đa giác, chọn ngẫu nhiên một tứ giác. Tính xác suất để tứ giác chọn được là hình chữ nhật. + Trong không gian Oxyz cho mặt phẳng (P): 2x + y + z – 3 = 0 và hai điểm A(m;1;0), B(1;-m;2). Gọi E; F lần lượt là hình chiếu của A; B lên mặt phẳng (P). Biết EF = √5. Tổng tất cả các giá trị của tham số m là?
Đề thi thử Toán THPTQG 2018 trường THPT Quỳnh Lưu 2 - Nghệ An lần 2
Đề thi thử Toán THPTQG 2018 trường THPT Quỳnh Lưu 2 – Nghệ An lần 2 mã đề 213 được biên soạn nhằm giúp học sinh có điều kiện thử sức và rèn luyện để chuẩn bị cho kỳ thi chính thức THPT Quốc gia 2018 môn Toán, đề được biên soạn theo hình thức trắc nghiệm khách quan với 50 câu hỏi, thí sinh làm bài trong 90 phút, đề thi có đáp án . Trích dẫn đề thi thử Toán THPTQG 2018 : + Nếu ba đường thẳng không cùng nằm trong một mặt phẳng và đôi một cắt nhau thì: A. Ba đường thẳng đó tạo thành một tam giác. B. Ba đường thẳng đó đồng quy. C. Ba đường thẳng đó trùng nhau. D. Không có ba đường thẳng như vậy. [ads] + Giải bóng chuyền VTV Cup gồm 9 đội bóng tham dự, trong đó có 6 đội nước ngoài và 3 đội của Việt Nam. Ban tổ chức cho bốc thăm ngẫu nhiên để chia thành 3 bảng A, B, C và mỗi bảng có 3 đội. Tính xác suất để 3 đội bóng của Việt Nam ở 3 bảng khác nhau. + Diện tích hình phẳng giới hạn bởi các đường y = √x và x – y = 0 bằng diện tích của hình nào sau đây A. Diện tích hình vuông có cạnh bằng 2. B. Diện tích hình chữ nhật có chiều dài,chiều rộng lần lượt là 5 và 3. C. Diện tích toàn phần hình tứ diện đều có cạnh bằng 1/√6.3^(1/4). D. Diện tích hình tròn có bán kính bằng 3.