Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề phương pháp tọa độ trong mặt phẳng Toán 10 Cánh Diều

Tài liệu gồm 353 trang, bao gồm lý thuyết, hướng dẫn giải bài tập trong sách giáo khoa, các dạng bài tập tự luận và hệ thống bài tập trắc nghiệm chuyên đề phương pháp tọa độ trong mặt phẳng Oxy trong chương trình SGK Toán 10 Cánh Diều (viết tắt: Toán 10 CD), có đáp án và lời giải chi tiết. BÀI 1 + BÀI 2 . TỌA ĐỘ CỦA VECTƠ. BIỂU THỨC TỌA ĐỘ CỦA CÁC PHÉP TOÁN VECTƠ. + Dạng 1. Tìm tọa độ điểm, tọa độ vectơ trên mặt phẳng. + Dạng 2. Xác định tọa độ điểm, vectơ liên quan đến biểu thức dạng u + v, u – v, ku. + Dạng 3. Xác định tọa độ các điểm của một hình. + Dạng 4. Bài toán liên quan đến sự cùng phương của hai vectơ. Phân tích một vectơ qua hai vectơ không cùng phương. BÀI 3 . PHƯƠNG TRÌNH ĐƯỜNG THẲNG. + Dạng 1. Xác định VTCP & VTPT của đường thẳng. + Dạng 2. Viết phương trình đường thẳng thỏa mãn một số tính chất cho trước. BÀI 4 . VỊ TRÍ TƯƠNG ĐỐI GIỮA HAI ĐƯỜNG THẲNG, GÓC VÀ KHOẢNG CÁCH. + Dạng 1. Xét vị trí tương đối của hai đường thẳng. + Dạng 2. Tính góc, khoảng cách. BÀI 5 . PHƯƠNG TRÌNH ĐƯỜNG TRÒN. + Dạng 1. Nhận dạng phương trình đường tròn. Tìm tâm và bán kính đường tròn. + Dạng 2. Viết phương trình đường tròn. + Dạng 3. Vị trí tương đối của điểm; đường thẳng; đường tròn với đường tròn. + Dạng 4. Viết phương trình tiếp tuyến với đường tròn. BÀI 6 . BA ĐƯỜNG CONIC. + Dạng 1. Xác định các yếu tố của elip. + Dạng 2. Viết phương trình chính tắc của elip. + Dạng 3. Tìm điểm thuộc elip thỏa điều kiện cho trước.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề phương pháp tọa độ trong mặt phẳng - Trần Văn Tài
Tài liệu gồm 121 trang tóm tắt lý thuyết và tuyển chọn các bài tập trắc nghiệm phương trình đường thẳng và phương trình đường tròn trong chuyên đề phương pháp tọa độ trong mặt phẳng (Hình học 10 chương 3), tài liệu được biên soạn bởi thầy Trần Văn Tài, các bài tập có đáp án và lời giải chi tiết. Nội dung tài liệu : A – PHƯƠNG TRÌNH ĐƯỜNG THẲNG Vấn đề 1. Lập phương trình của đường thẳng Vấn đề 2. Các bài toán dựng tam giác, sự tương giao, khoảng cách và góc 1. Các bài toán dựng tam giác Đó là các bài toán xác định toạ độ các đỉnh hoặc phương trình các cạnh của một tam giác khi biết một số yếu tố của tam giác đó. Để giải loại bài toán này ta thường sử dụng đến các cách dựng tam giác. Ta thường gặp một số loại cơ bản sau đây: + Loại 1. Dựng ΔABC, khi biết các đường thẳng chứa cạnh BC và hai đường cao BB’, CC’ + Loại 2. Dựng ΔABC, khi biết đỉnh A và hai đường thẳng chứa hai đường cao BB’, CC’ + Loại 3. Dựng ΔABC, khi biết đỉnh A, 2 đường thẳng chứa 2 đường trung tuyến BM, CN. + Loại 4. Dựng ΔABC, khi biết hai đường thẳng chứa hai cạnh AB, AC và trung điểm M của cạnh BC 2. Vị trí tương đối – khoảng cách – góc [ads] Vấn đề 3. Một số bài toán cơ bản trong tam giác + Dạng 1. Tìm điểm M’ đối xứng với điểm M qua đường thẳng d . Ax + By + C = 0 + Dạng 2. Lập phương trình đường thẳng d’ đối xứng với đường thẳng d qua đường thẳng Δ + Dạng 3. Lập phương trình đường thẳng d’ đối xứng với đường thẳng d qua điểm I + Dạng 4. Lập phương trình các đường phân giác của các góc tạo bởi hai đường thẳng B – PHƯƠNG TRÌNH ĐƯỜNG TRÒN + Nhóm 1. Xác định tâm và bán kính đường tròn + Nhóm 2. Lập phương trình đường tròn + Nhóm 3. Tập hợp điểm (quỹ tích tâm đường tròn) + Nhóm 4. Vị trí tương đối của đường thẳng và đường tròn + Nhóm 5. Vị trí tương đối của hai đường tròn + Nhóm 6. Tiếp tuyến của đường tròn + Nhóm 7. Xét vị trí tương đối của đường thẳng và đường tròn để giải hệ phương trình – hệ bất phương trình
Chuyên đề phương pháp tọa độ trong mặt phẳng - Nguyễn Bảo Vương
Tài liệu gồm 165 trang với lý thuyết, phân dạng và bài tập trắc nghiệm các dạng toán phương pháp tọa độ trong mặt phẳng tài liệu do thầy Nguyễn Bảo Vương biên soạn. + Phần 1. Phương trình tổng quát của đường thẳng + Phần 2. Phương trình tham số của đường thẳng + Phần 3. Khoảng cách và góc + Phần 4. Đường tròn [ads] + Phần 5. Đường elip + Phần 6. Đường hypebol + Phần 7. Đường parabol + Phần 8. Ba đường cônic + Phần 9. Bài tập tổng hợp phương pháp tọa độ trong mặt phẳng
Phương pháp trắc nghiệm hình học giải tích mặt phẳng và không gian - Mộng Hy, Thế Cấp
Cuốn sách gồm 247 trang gồm lý thuyết, phương pháp giải toán và các bài tập trắc nghiệm có lời giải chi tiết chủ đề hình học giải tích. Cuốn sách gồm 10 chuyên đề được chia làm 2 phần: phần 1 là phần hình học giải tích trong mặt phẳng do TS. Đậu Thế Cấp biên soạn, phần 2 là phần hình học giải tích trong không gian do PGS.TS Nguyễn Mộng Hy biên soạn. Cuối cùng có phần trắc nghiệm giúp người đọc hoàn thiện hơn kiến thức của mình. Phần 1. Hình học giải tích trong mặt phẳng Chuyên đề 1. Vectơ và tọa độ trong mặt phẳng Chuyên đề 2. Đường thẳng trong mặt phẳng Chuyên đề 3. Đường tròn Chuyên đề 4. Elip Chuyên đề 5. Hypebol Chuyên đề 6. Parabol [ads] Phần 2. Hình học giải tích trong không gian Chuyên đề 7. Vectơ tọa độ trong không gian Chuyên đề 8. Mặt phẳng Chuyên đề 9. Đường thẳng trong không gian Chuyên đề 10. Mặt cầu
Vận dụng tính chất hình phẳng để giải bài toán Oxy liên quan đến đường tròn - Trần Duy Thúc
Tài liệu gồm 38 trang hướng dẫn vận dụng tính chất hình phẳng để giải bài toán Oxy liên quan đến đường tròn, tài liệu do thầy Trần Duy Thúc biên soạn. Câu hình học phẳng Oxy chắc chắn xuất trong đề thi THPT Quốc Gia hàng năm. Nhằm đáp ứng xu hướng ra đề mới của Bộ Giáo Dục và Đào Tạo về nội dung của câu này. Thầy biên soạn tài liệu này với mục đích giúp các em có thể chinh phục được câu hình học phẳng liên quan tới đường tròn (Dạng bài thường xuất hiện trong những năm gần đây). Từ đó xây dựng lòng tin để có thể đạt kết quả tốt nhất trong kì thi. [ads] Tài liệu được chia ra thành 4 phần: + Phần 1. Một số kiến thức cần nhớ. + Phần 2. Rèn luyện kỉ năng chứng minh và vận dụng tính chất biết trước để giải bài toán. + Phần 3. Rèn luyện tư duy phân tích,dự đoán tính chất và chứng minh. + Phần 4. Bài tập tự rèn luyện.