Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Lý thuyết và bài tập trắc nghiệm số phức - Phùng Hoàng Em

Tài liệu gồm 30 trang tóm tắt lý thuyết số phức và tuyển chọn các bài tập trắc nghiệm số phức có đáp án giúp học sinh học tốt chương trình Giải tích 12 chương 4 và ôn tập thi THPT Quốc gia môn Toán, tài liệu được biên soạn bởi thầy Phùng Hoàng Em. BÀI 1 . NHẬP MÔN SỐ PHỨC Vấn đề 1 . Xác định các đại lượng liên quan đến số phức. 1. Biến đổi số phức z về dạng A + Bi. 2. Khi đó: phần thực là A, phần ảo là B, số phức liên hợp là A + Bi = A − Bi, mô-đun bằng √(A^2 +B^2). Vấn đề 2 . Số phức bằng nhau. a + bi = c + di ⇔ a = c và b = d. a + bi = 0 ⇔ a = 0 và b = 0. Vấn đề 3 . Điểm biểu diễn số phức. Mỗi số phức z = a + bi được biểu diễn bởi duy nhất một điểm M(a,b) trên mặt phẳng tọa độ. Vấn đề 4 . Lũy thừa với đơn vị ảo. Các công thức biến đổi: i2 = −1, i3 = −i, in = 1 nếu n chia hết cho 4, in = i nếu n chia 4 dư 1, in = −1 nếu n chia 4 dư 2, in = −i nếu n chia 4 dư 3. Tổng n số hạng đầu của một cấp số cộng: Sn = n/2(u1 + un) hoặc Sn = n/2(2u1 + (n − 1)d), với u1 là số hạng đầu, d là công sai. Tổng n số hạng đầu của một cấp số nhân: Sn = u1.(1 − qn)/(1 − q), với u1 là số hạng đầu, q là công bội (q khác 1). [ads] BÀI 2 . PHƯƠNG TRÌNH VÀ HỆ PHƯƠNG TRÌNH Vấn đề 1 . Phương trình với hệ số phức. Trong chương trình, ta chỉ xét phương trình dạng này với ẩn z bậc nhất. + Ta giải tương tự như giải phương trình bậc nhất trên tập số thực. + Thực hiện các biến đổi đưa về dạng z = A + Bi. Vấn đề 2 . Phương trình bậc hai với hệ số thực và một số phương trình quy về bậc hai. Xét phương trình ax2 + bx + c = 0, với a, b, c ∈ R và a khác 0. Đặt ∆ = b2 − 4ac, khi đó: 1. Nếu ∆ ≥ 0 thì phương trình có nghiệm x = (−b ±√∆)/2a. 2. Nếu ∆ < 0 thì phương trình có nghiệm x = (−b ± i√|∆|)/2a. 3. Định lý Viet: x1 + x2 = −b/a và x1.x2 = c/a. Vấn đề 3 . Xác định số phức bằng cách giải hệ phương trình. Gọi z = a + bi, với a, b ∈ R. + Nếu đề bài cho dạng hai số phức bằng nhau, ta áp dụng một trong hai công thức sau: a + bi = c + di ⇔ a = c hay b = d, a + bi = 0 ⇔ a = 0 hay b = 0. + Nếu đề bài cho phương trình ẩn z và kèm theo một trong các ẩn z, |z| … Ta thay z = a + bi vào điều kiện đề cho, đưa về “hai số phức bằng nhau”. + Nếu đề cho z thỏa hai điều kiện riêng biệt thì từ 2 điều kiện đó, ta tìm được hệ phương trình liên quan đến a, b. Giải tìm a, b. BÀI 3 . BIỄU DIỄN HÌNH HỌC CỦA SỐ PHỨC Vấn đề . Biễu diễn hình học của số phức. Trong mặt phẳng toạ độ Oxy, giả sử: M(x;y) là điểm biểu diễn của z = x + yi (x, y ∈ R), N(x’;y’) là điểm biểu diễn của z’ = x’ + y’i (x’, y’ ∈ R), I(a;b) là điểm biểu diễn của z0 = a + bi cho trước (a, b ∈ R). Khi đó, ta có các kết quả sau: + |z| = √(x^2 + y^2) = OM (khoảng cách từ điểm M đến gốc toạ độ O). + |z – z’| = √(x’ – x)2(y’ – y)2 = MN (khoảng cách giữa M và N). + |z – z0| ≤ R ⇔ (x – a)^2 + (y – b)^2 ≤ R^2: hình tròn tâm I(a; b), bán kính R. + |z – z0| = R ⇔ (x – a)^2 + (y – b)^2 = R^2: đường tròn tâm I(a; b), bán kính R.

Nguồn: toanmath.com

Đọc Sách

Bài tập trắc nghiệm Hình học 12 chuyên đề nón - trụ - cầu
Với mong muốn giúp các em học sinh có thể trang bị thêm cho mình hành trang trong kỳ thi THPT Quốc Gia năm 2018 sắp tới, chúng tôi đã cố gắng cho ra đời tài liệu Chuyên đề NÓN – TRỤ – CẦU. Tài liệu này được chia thành 3 phần căn bản: • Phần 1: Trình bày lý thuyết căn bản về mặt nón, mặt trụ, mặt cầu. Những lý thuyết này bao gồm những kiến thức đã nêu trong sách giáo khoa và một số kiến thức bổ sung khác. • Phần 2: Một số dạng toán và phương pháp giải được trình bày chi tiết, rõ ràng. Mỗi dạng đều kèm theo ví dụ minh họa và một số bài tập giúp học sinh rèn luyện. • Phần 3: Bài tập tổng hợp cho từng bài. Các bài tập này chủ yếu trích từ các đề thi thử năm 2017 của các trường trong cả nước. [ads] Tài liệu được biên soạn hết sức tâm huyết bởi các thầy, cô giáo: Nguyễn Ngọc Dũng, Tạ Nguyễn Đình Đăng, Vương Phú Quý, Nguyễn Viết Sinh. Bạn đọc có thể xem thêm các chuyên đề mặt nón – mặt trụ – mặt cầu khác tại đây.
Lý thuyết và bài tập hình học không gian - Nguyễn Tất Đỉnh
Tài liệu gồm 64 trang tổng hợp lý thuyết, phân dạng toán và tuyển chọn bài tập trắc nghiệm hình học không gian, tài liệu được biên soạn bởi thầy Nguyễn Tất Đỉnh. Nội dung tài liệu : + Phần 1. Tổng hợp lý thuyết khối đa diện và các kiến thức liên quan. + Phần 2. Phân dạng bài toán hình học không gian kèm các ví dụ minh họa có lời giải. + Phần 3. Tuyển chọn bài tập trắc nghiệm hình không gian có đáp án và lời giải chi tiết. [ads] Xem thêm : + Bài tập trắc nghiệm khối đa diện, mặt nón, mặt trụ và mặt cầu – Trần Đình Cư + Bài tập trắc nghiệm chuyên đề khối đa diện, mặt nón – trụ – cầu – Đặng Việt Đông + Chuyên đề hình học không gian dành cho học sinh trung bình – yếu
186 bài tập trắc nghiệm mặt cầu, hình cầu và khối cầu - Hứa Lâm Phong
Tài liệu gồm 18 trang tuyển chọn 186 bài tập trắc nghiệm mặt cầu, hình cầu và khối cầu, tài liệu do thầy Hứa Lâm Phong biên soạn. Các bài toán được chia thành các dạng: + Vấn đề 1.1: Bài toán liên quan đến vị trí tương đối của mặt cầu và quỹ tích của tập hợp điểm là mặt cầu + Vấn đề 1.2: Bài toán liên quan đến tính thể tích V của khối cầu, diện tích S của mặt cầu + Vấn đề 2.1: bài toán liên quan đến điều kiện tồn tại mặt cầu và xác định tâm của mặt cầu ngoại tiếp khối chóp + Vấn đề 2.2: Bài toán liên quan đến tính bán kính R của mặt cầu ngoại tiếp khối chóp tam giác (từ đó tính V, S) + Vấn đề 2.3: Bài toán liên quan đến tính bán kính R của mặt cầu ngoại tiếp khối chóp tứ giác [ads] + Vấn đề 2.4: Bài toán liên quan đến xác định bán kính của mặt cầu nội tiếp khối chóp + Vấn đề 3: Bài toán liên quan đến xác định tâm và bán kính của mặt cầu ngoại tiếp và nội tiếp khối lăng trụ + Vấn đề 4: Bài toán liên quan đến mặt cầu nội tiếp và ngoại tiếp khối tròn xoay (khối nón, khối trụ) Bạn đọc có thể xem thêm tài liệu 124 bài tập trắc nghiệm mặt nón, hình nón và khối nón – Hứa Lâm Phong
Bài tập trắc nghiệm mặt nón, mặt trụ, mặt cầu có đáp án - Nguyễn Ngọc Dũng
Tài liệu gồm 68 trang tuyển tập các bài tập trắc nghiệm mặt nón, mặt trụ, mặt cầu có đáp án. 1. Hình nón (132 bài toán) 2. Hình trụ (95 bài toán) 3. Hình cầu (128 bài toán) 4. Các bài toán tổng hợp hình nón – trụ – cầu (45 bài toán) 5. Các bài toán thực tế (71 bài toán) [ads]