Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tiếp cận phương pháp và vận dụng cao trong trắc nghiệm bài toán thực tế

Cuốn sách Tiếp cận phương pháp và vận dụng cao trong trắc nghiệm bài toán thực tế – Trần Công Diêu, Nguyễn Văn Quang gồm 444 trang phân dạng, tuyển chọn và hướng dẫn giải các bài toán trắc nghiệm thực tế và các bài toán vận dụng cao trong các đề thi thử môn Toán. Chương 1. Bài toán vận dụng cao chuyên đề ứng dụng đạo hàm Chủ đề 1. Các bài toán thực tế ứng dụng đạo hàm để giải + Dạng 1. Một số bài toán ứng dụng về kinh doanh, sản xuất trong đời sống + Dạng 2. Một số bài toán ứng dụng về chuyển động Chủ đề 2. Tìm giá trị của tham số để hàm số đơn điệu trên miền D Chủ đề 3. Giải và biện luận phương trình, bất phương trình dựa vào hàm số Chủ đề 4. Tìm giá trị của tham số để hàm số có cực trị thỏa mãn các yếu tố đặc biệt Chủ đề 5. Tìm giá trị của tham số để 2 hàm số giao nhau thỏa mãn các yếu tố đặc biệt Chủ đề 6. Tìm giá trị của tham số để tiếp tuyến của hàm số thỏa mãn các yếu tố đặc biệt Chương 2. Bài toán vận dụng cao chuyên đề hàm số mũ, logarit Chủ đề 1. Tính số chữ số của một số tự nhiên Chủ đề 2. Các dạng bài toán lãi suất Chủ đề 3. Các dạng toán khác: Hàm số mũ và hàm số logarit còn được áp dụng trong các bài toán tính dân số, tính lượng khí, tính độ pH [ads] Chương 3. Bài toán vận dụng cao nguyên hàm, tích phân Chủ đề 1. Các bài toán nguyên hàm Chủ đề 2. Các bài toán tích phân Chủ đề 3. Ứng dụng tích phân để tính diện tích, thể tích Chủ đề 4. Ứng dụng tích phân giải bài toán vật lý và bài toán thực tế Chương 4. Bài toán vận dụng cao số phức Chủ đề 1. Các bài toán tính toán số phức Chủ đề 2. Phương trình số phức Chủ đề 3. Các bài toán liên quan đến biểu diễn điểm, tập hợp điểm Chương 5. Bài toán vận dụng cao hình học không gian Chủ đề 1. Thể tích khối đa diện Chủ đề 2. Mặt cầu – Khối cầu Chủ đề 3. Mặt nón – Khối nón Chủ đề 4. Mặt trụ – Khối trụ Chủ đề 5. Ứng dụng hình học không gian giải các bài toán thực tế Chương 6. Bài toán vận dụng cao hình học Oxyz Chủ đề 1. Tọa độ của điểm và vectơ trong không gian Chủ đề 2. Mặt phẳng trong không gian Chủ đề 3. Đường thẳng trong không gian Chủ đề 4. Mặt cầu Xem thêm : + Tổng hợp 250 câu hỏi trắc nghiệm vận dụng cao – Nhóm Toán   + Tuyển chọn 152 bài toán vận dụng cao trong các đề thi thử – Nguyễn Văn Rin

Nguồn: toanmath.com

Đọc Sách

Tổng ôn toán vận dụng - vận dụng cao ôn thi THPTQG môn Toán - Lục Trí Tuyên
Tài liệu gồm 60 trang được biên soạn bởi thầy Lục Trí Tuyên tuyển tập 142 bài toán trắc nghiệm mức độ vận dụng và vận dụng cao ôn thi THPT Quốc gia môn Toán, trong đó gồm 35 bài toán thuộc chương trình Toán 11 và 107 bài toán nằm trong chương trình Toán 12, các bài toán đều có đáp án, được phân tích và giải chi tiết.
Chuyên đề Toán 12 ôn thi THPTQG - Lư Sĩ Pháp (Tập 2 Hình học)
Tài liệu gồm 95 trang trình bày lý thuyết cần nhớ, phân dạng toán có hướng dẫn giải và bài tập trắc nghiệm có đáp án các chuyên đề Toán 12 phần Hình học ôn thi THPT Quốc gia, tài liệu được biên soạn bởi thầy Lư Sĩ Pháp, nội dung của cuốn tài liệu bám sát chương trình chuẩn và chương trình nâng cao về môn Toán đã được Bộ Giáo dục và Đào tạo quy định. Các chuyên đề trong tài liệu : + Chuyên đề 5. Khối đa diện – Thể tích khối đa diện + Chuyên đề 6. Mặt nón – Mặt trụ và Mặt cầu + Chuyên đề 7. Phương pháp tọa độ trong không gian Oxyz [ads] Xem thêm : + Chuyên đề Toán 12 ôn thi THPTQG – Lư Sĩ Pháp (Tập 1: Giải tích) + Chuyên đề Toán 11 ôn thi THPT Quốc gia – Lư Sĩ Pháp
Chuyên đề Toán 12 ôn thi THPTQG - Lư Sĩ Pháp (Tập 1 Giải tích)
Tài liệu gồm 153 trang tuyển tập lý thuyết, phân dạng toán và bài tập trắc nghiệm có đáp án các chuyên đề Toán 12 phần Giải tích ôn thi THPT Quốc gia, tài liệu được biên soạn bởi thầy Lư Sĩ Pháp. CHUYÊN ĐỀ 1 . ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ §1. SỰ ĐỒNG BIẾN, NGHỊCH BIẾN CỦA HÀM SỐ + Dạng 1. Tìm các khoảng đồng biến, nghịch biến của hàm số đã cho + Dạng 2. Tìm tham số m ∈ R để hàm số luôn luôn đồng biến hay nghịch biến trên tập xác định của nó + Dạng 3. Tìm tham số m ∈ R để hàm số luôn luôn đồng biến hay nghịch biến trên khoảng (α; β) §2. CỰC TRỊ CỦA HÀM SỐ + Dạng 1. Tìm các điểm cực trị của hàm số y = f(x) + Dạng 2. Tìm tham số m để hàm số đạt cực đại hay cực tiểu tại điểm x0 + Dạng 3. Tìm tham số m để hàm số không có hoặc có cực trị và thỏa mãn điều kiện bài toán §3. GIÁ TRỊ LỚN NHẤT, GIÁ TRỊ NHỎ NHẤT CỦA HÀM SỐ + Dạng 1. Tìm GTLN – GTNN của hàm số trên đoạn [a; b]. Xét hàm số y = f(x) + Dạng 2. Tìm GTLN – GTNN của hàm số chứa căn thức + Dạng 3. Tìm GTLN – GTNN của hàm số trên một khoảng (a; b) + Dạng 4. Ứng dụng vào bài toán thực tế §4. ĐƯỜNG TIỆM CẬN + Dạng 1: Tìm các đường tiệm cận thông qua định nghĩa; bảng biến thiên + Dạng 2: Tìm các đường tiệm cận của hàm số nhất biến + Dạng 3: Tìm các đường tiệm đứng của hàm số khác §5. KHẢO SÁT SỰ BIẾN THIÊN VÀ VẼ ĐỒ THỊ HÀM SỐ §6. MỘT SỐ BÀI TOÁN THƯỜNG GẶP VỀ ĐỒ THỊ + Dạng 1. Biện luận số giao điểm của hai đồ thị + Dạng 2. Biện luận số nghiệm của phương trình bằng đồ thị + Dạng 3. Viết phương trình tiếp tuyến + Dạng 4. Sự tiếp xúc của các đường cong [ads] CHUYÊN ĐỀ 2 . HÀM SỐ LŨY THỪA – HÀM SỐ MŨ – HÀM SỐ LÔGARIT. PHƯƠNG TRÌNH – BẤT PHƯƠNG TRÌNH – HỆ PHƯƠNG TRÌNH MŨ – LÔGARIT + Dạng 1. Xét tính đúng sai của một mệnh đề + Dạng 2. Tính (rút gọn) biểu thức mũ và lôgarit + Dạng 3. Biểu diễn một lôgarit qua các yếu tố cho trước + Dạng 4. So sánh các biểu thức chứa mũ và lôgarit + Dạng 5. Tập xác định của hàm số + Dạng 6. Tính đạo hàm + Dạng 7. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số + Dạng 8. Giải phương trình, bất phương trình, hệ phương trình + Dạng 9. Nhận dạng đồ thị, xác định các hệ số. + Dạng 10. Bài toán thực tế CHUYÊN ĐỀ 3 . NGUYÊN HÀM – TÍCH PHÂN VÀ ỨNG DỤNG CHUYÊN ĐỀ 4 . SỐ PHỨC 1. Số phức 2. Các phép toán trên số phức 3. Mối liên hệ giữa z và z‾ 4. Phương trình bậc hai với hệ số thực 5. Cực trị số phức 6. Một số dạng cơ bản tìm giá trị lớn nhất, giá trị nhỏ nhất của |z| + Dạng 1. Cho số phức z thỏa mãn |z – (a + bi)| = R, R > 0. Tìm giá trị nhỏ nhất, lớn nhất của z + Dạng 2. Cho số phức z thỏa mãn |z – z1| = r1, r1 > 0. Tìm giá trị nhỏ nhất, giá trị lớn nhất của P = |z – z2| + Dạng 3. Cho số phức z thỏa mãn |z – z1| + |z – z2| = k, k > 0. Tìm giá trị nhỏ nhất, giá trị lớn nhất của P = |z| + Dạng 4. Cho hai số phức z1, z2 thỏa mãn z1 + z2 = m + ni và |z1 – z2| = p > 0. Tìm giá trị lớn nhất của P = |z1| + |z2| Xem thêm :  Chuyên đề Toán 11 ôn thi THPT Quốc gia – Lư Sĩ Pháp
Tổng hợp Toán vận dụng cao có lời giải chi tiết - Đoàn Trí Dũng
Tài liệu gồm 51 được biên soạn bởi thầy Đoàn Trí Dũng tổng hợp 160 bài toán vận dụng cao có lời giải chi tiết nhằm giúp học sinh ôn tập đạt điểm 8 – 9 – 10 trong kỳ thi THPT Quốc gia môn Toán, các bài toán thuộc nhiều chủ đề khác nhau được trích dẫn từ các đề thi thử môn Toán.