Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các dạng toán phương trình mặt phẳng - Nguyễn Bảo Vương

Tài liệu gồm 68 trang được biên soạn bởi thầy Nguyễn Bảo Vương bao gồm tóm tắt lý thuyết, các dạng toán, hướng dẫn giải và bài tập về chủ đề phương trình mặt phẳng trong chương trình Hình học 12 chương 3: Phương pháp tọa độ trong không gian, các bài toán trong tài liệu có đáp án và lời giải chi tiết. Các dạng toán về phương trình mặt phẳng và cách giải : Dạng 1 . Phương trình mặt phẳng Phương pháp : Phương trình: Ax + By + Cz + D = 0 là phương trình của một mặt phẳng khi và chỉ khi A2 + B2 + C2 > 0. Chú ý : Đi kèm với họ mặt phẳng (Pm) thường có thêm các câu hỏi phụ: + Câu hỏi 1: Chứng minh rằng họ mặt phẳng (Pm) luôn đi qua một điểm cố định. + Câu hỏi 2: Cho điểm M có tính chất K, biện luận theo vị trí của M số mặt phẳng của họ (Pm) đi qua M. + Câu hỏi 3: Chứng minh rằng họ mặt phẳng (Pm) luôn chứa một đường thẳng cố định. Dạng 2 . Viết phương trình mặt phẳng Phương pháp : Để viết phương trình mặt phẳng (P) ta có thể lựa chọn một trong các cách sau: Cách 1: Thực hiện theo các bước: + Bước 1. Xác định điểm M0(x0; y0; z0) ∈ (P) và vectơ pháp tuyến (VTPT) n(n1; n2; n3) của (P). + Bước 2. Khi đó, phương trình mặt phẳng (P): n1(x − x0) + n2(y − y0) + n3(z − z0) = 0. Cách 2: Sử dụng phương pháp quỹ tích. [ads] Chú ý : Chúng ta có các kết quả: 1. Mặt phẳng (P) đi qua điểm M(x0; y0; z0), luôn có dạng: (P): A(x − x0) + B(y − y0) + C(z − z0) = 0. 2. Mặt phẳng (P) có vectơ pháp tuyến (VTPT) n(n1; n2; n3), luôn có dạng: (P): n1x + n2y + n3z + D = 0. Để xác định (P), ta cần đi xác định D. 3. Mặt phẳng (P) song song với (Q): Ax + By + Cz + D = 0, luôn có dạng (P): Ax + By + Cz + E = 0. Để xác định (P), ta cần đi xác định E. 4. Phương trình mặt phẳng theo các đoạn chắn, đó là mặt phẳng (P) đi qua ba điểm A(a; 0; 0), B(0; b; 0), C(0; 0; c) có phương trình (P): x/a + y/b + z/c = 1. 5. Với phương trình mặt phẳng (P) đi qua ba điểm không thẳng hàng M, N, P chúng ta có thể lựa chọn một trong hai cách sau: + Cách 1: Gọi n là vectơ pháp tuyến (VTPT) của mặt phẳng (P), ta có: n = [MN, MP]. Khi đó, phương trình mặt phẳng (P) đi qua M và có vectơ pháp tuyến (VTPT) là n. + Cách 2: Giả sử mặt phẳng (P) có phương trình: Ax + By + Cz + D = 0, (1) với A2 + B2 + C2 > 0. Vì M, N, P thuộc mặt phẳng (P) nên ta có hệ ba phương trình với bốn ẩn A, B, C, D. Biểu diễn ba ẩn theo một ẩn còn lại, rồi thay vào (1) chúng ta nhận được phương trình mặt phẳng (P). Dạng 3 . Vị trí tương đối của hai mặt phẳng Phương pháp : Sử dụng kiến thức trong phần vị trí tương đối của hai mặt phẳng. Dạng 4 . Vị trí tương đối của mặt cầu với mặt phẳng Phương pháp : Ta thực hiện theo các bước: Bước 1. Xác định tâm I và tính bán kính R của mặt cầu (S). Xác định d = d(I, (P)). Bước 2. So sánh d với R để đưa ra kết luận: + Nếu d > R ⇔ (P) ∩ (S) = ∅. + Nếu d = R ⇔ (P) tiếp xúc với (S) tại H. + Nếu d < R ⇔ (P) ∩ (S) = (C) là một đường tròn nằm trong mặt phẳng (P).

Nguồn: toanmath.com

Đọc Sách

Chủ đề phương trình đường thẳng ôn thi tốt nghiệp THPT môn Toán
Tài liệu gồm 304 trang, được biên soạn bởi thầy giáo Phan Nhật Linh, tổng hợp lý thuyết trọng tâm, ví dụ minh họa và các dạng bài tập chủ đề phương trình đường thẳng ôn thi tốt nghiệp THPT môn Toán, có đáp án và lời giải chi tiết. DẠNG 1 Xác định vectơ chỉ phương của đường thẳng. DẠNG 2 Viết phương trình đường thẳng. DẠNG 3 Tìm tọa độ điểm liên quan đến đường thẳng. DẠNG 4 Góc giữa đường thẳng và mặt phẳng, giữa hai đường thẳng. DẠNG 5 Khoảng cách từ điểm đến đường thẳng, giữa hai đường thẳng. DẠNG 6 Vị trí tương đối giữa hai đường thẳng, giữa đường thẳng và mặt phẳng. DẠNG 7 Bài toán liên quan đến đường thẳng – mặt phẳng – mặt cầu. DẠNG 8 Điểm thuộc đường thẳng. DẠNG 9 Phương trình đường thẳng liên quan đến góc và khoảng cách. DẠNG 10 Hình chiếu và bài toán cực trị. DẠNG 11 Phương trình đường thẳng trong đề thi của Bộ Giáo dục và Đào tạo.
Chủ đề phương trình mặt phẳng ôn thi tốt nghiệp THPT môn Toán
Tài liệu gồm 262 trang, được biên soạn bởi thầy giáo Phan Nhật Linh, tổng hợp lý thuyết trọng tâm, ví dụ minh họa và các dạng bài tập chủ đề phương trình mặt phẳng ôn thi tốt nghiệp THPT môn Toán, có đáp án và lời giải chi tiết. DẠNG 1 Xác định vectơ pháp tuyến của mặt phẳng. DẠNG 2 Viết phương trình mặt phẳng dùng đường thẳng. DẠNG 3 Vị trí tương đối giữa hai mặt phẳng. DẠNG 4 Tìm tọa độ điểm liên quan đến mặt phẳng. DẠNG 5 Khoảng cách từ một điểm để một mặt phẳng. DẠNG 6 Ví trị tương đối giữa mặt cầu và mặt phẳng. DẠNG 7 Viết phương trình mặt cầu liên quan đến mặt phẳng. DẠNG 8 Điểm thuộc mặt phẳng. DẠNG 9 Phương trình mặt phẳng không dùng đường thẳng. DẠNG 10 Phương trình theo đoạn chắn. DẠNG 11 Hình chiếu của điểm lên mặt phẳng. DẠNG 12.1 Các bài toán cực trị phần 1. DẠNG 12.2 Các bài toán cực trị phần 2. DẠNG 13 Các bài toán liên quan đến góc. DẠNG 14 Phương trình mặt phẳng trong đề thi của Bộ Giáo dục và Đào tạo.
Chủ đề hệ trục tọa độ Oxyz ôn thi tốt nghiệp THPT môn Toán
Tài liệu gồm 100 trang, được biên soạn bởi thầy giáo Phan Nhật Linh, tổng hợp lý thuyết trọng tâm, ví dụ minh họa và các dạng bài tập chủ đề hệ trục tọa độ Oxyz ôn thi tốt nghiệp THPT môn Toán, có đáp án và lời giải chi tiết. DẠNG 1 Điểm và vecto trong hệ trục tọa độ. DẠNG 2 Tích vô hướng và ứng dụng. DẠNG 3 Mặt cầu trong không gian. DẠNG 4 Cực trị liên quan đến hệ trục tọa độ. DẠNG 5 Hệ trục tọa độ trong đề thi của Bộ Giáo dục và Đào tạo.
Bài toán cực trị tọa độ không gian Oxyz
Tài liệu gồm 47 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề bài toán cực trị tọa độ không gian Oxyz, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Hình học chương 3. I. LÝ THUYẾT TRỌNG TÂM II. CÁC DẠNG TOÁN TRỌNG TÂM VÀ PHƯƠNG PHÁP GIẢI Dạng 1: Tìm điểm M thuộc (P) sao cho u aMA bMB cMC có u đạt min. Dạng 2: Tìm điểm M thuộc (P) sao cho 222 T aMA bMB cMC đạt max hoặc min. Dạng 3: Tìm điểm M thuộc (P) sao cho MA MB min hoặc MA MB max. Dạng 4: Bài toán lập phương trình mặt phẳng, đường thẳng có yếu tố cực trị. Dạng 5: Bài toán tìm điểm M thuộc đường thẳng có yếu tố cực trị. Dạng 6: Một số bài toán cực trị khoảng cách liên quan đến mặt cầu. Dạng 7: Bài toán cực trị liên quan đến góc. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.