Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kỳ 2 Toán 12 năm 2020 - 2021 trường chuyên Hà Nội - Amsterdam

Thứ Ba ngày 13 tháng 04 năm 2021, trường THPT chuyên Hà Nội – Amsterdam tổ chức kiểm tra chất lượng môn Toán lớp 12 giai đoạn cuối học kì 2 năm học 2020 – 2021. Đề thi học kỳ 2 Toán 12 năm 2020 – 2021 trường chuyên Hà Nội – Amsterdam gồm 04 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết mã đề 326. Trích dẫn đề thi học kỳ 2 Toán 12 năm 2020 – 2021 trường chuyên Hà Nội – Amsterdam : + Kí hiệu 1 2 V V lần lượt là thể tích của khối cầu bán kính đơn vị và thể tích khối tròn xoay sinh ra khi quay quanh trục Ox hình phẳng giới hạn bởi đường thẳng y x2 1 và đường cong 2 y x2 1. Mệnh đề nào sau đây là đúng? + Ông Bình dự định gửi vào ngân hàng một số tiền với lãi suất 6,5% một năm. Biết rằng, cứ sau mỗi năm số tiền lãi sẽ được nhập vào vốn ban đầu. Tính số tiền tối thiểu x (triệu đồng) ông Bình gửi vào ngân hàng để sau 3 năm số tiền lãi đủ mua một chiếc xe gắn máy trị giá 30 triệu đồng. A. 140 triệu đồng. B. 154 triệu đồng. C. 150 triệu đồng. D. 145 triệu đồng. + Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng 1 3 2 1 2 1 x y z d và điểm M(9;7;4). Đường thẳng đi qua điểm M, cắt đường thẳng (d) tại điểm E có tọa độ nguyên và độ dài đoạn ME 10. Khi đó đường thẳng có phương trình là?

Nguồn: toanmath.com

Đọc Sách

Đề thi học kì 2 Toán 12 năm 2019 - 2020 sở GDKHCN Bạc Liêu
Sáng thứ Tư ngày 20 tháng 05 năm 2020, sở Giáo dục – Khoa học và Công nghệ tỉnh Bạc Liêu đã tổ chức kỳ thi kiểm tra chất lượng học kì 2 môn Toán 12 năm học 2019 – 2020. Đề thi học kì 2 Toán 12 năm 2019 – 2020 sở GDKHCN Bạc Liêu gồm có 07 trang, đề được biên soạn theo dạng đề trắc nghiệm 100% với 50 câu hỏi và bài toán, nội dung đề thuộc các chương: Nguyên hàm, tích phân và ứng dụng, Số phức và Phương pháp tọa độ trong không gian; thời gian làm bài thi là 90 phút, đề thi có đáp án mã đề 123, 207, 345, 469. Trích dẫn đề thi học kì 2 Toán 12 năm 2019 – 2020 sở GDKHCN Bạc Liêu : + Hình (H) giới hạn bởi các đường y = f(x), x = a, x = b (với a < b) và trục Ox. Khi quay (H) quanh trục Ox ta được một khối tròn xoay có thể tích tính bằng công thức sau? + Cho f(x), g(x) là các hàm số liên tục và xác định trên R. Trong các mệnh đề sau, mệnh đề nào sai? [ads] + Cho số phức z thỏa mãn |z − 1| ≤ 2. Tập hợp các điểm biểu diễn số phức w = (1 + i√8)z – 1 là hình tròn có tâm và bán kính lần lượt là? + Trong không gian Oxyz, cho mặt cầu (S) có tâm I (1;-2;3) và tiếp xúc với mặt phẳng (P): 2x + 9y – 9z – 123 = 0. Số điểm có tọa độ nguyên thuộc mặt cầu (S) là? + Trong không gian Oxyz, cho mặt cầu (S): x^2 + y^2 + z^2 – 2x + 4y + 1 = 0 và đường thẳng d: x = 2 – t, y = t, z = m + t. Tổng các giá trị của m để d cắt (S) tại hai điểm phân biệt A và B sao cho các mặt phẳng tiếp diện của (S) tại A và B vuông góc với nhau bằng.
Đề thi học kì 2 Toán 12 năm 2019 - 2020 trường Nguyễn Tất Thành - Hà Nội
Ngày … tháng 05 năm 2020, trường THCS & THPT Nguyễn Tất Thành, đặt trong trường Đại học Sư Phạm Hà Nội đã tổ chức kỳ thi kiểm tra học kì 2 môn Toán lớp 12 năm học 2019 – 2020. Đề thi học kì 2 Toán 12 năm 2019 – 2020 trường Nguyễn Tất Thành – Hà Nội mã đề 001, đề gồm có 05 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, nội dung đề bao quát toàn bộ chương trình Toán 12. Trích dẫn đề thi học kì 2 Toán 12 năm 2019 – 2020 trường Nguyễn Tất Thành – Hà Nội : + Cho hàm số y = f(x) liên tục trên R. Khẳng nào sau đây đúng? A. Nếu hàm số có giá trị cực đại là f(x0) với x0 thuộc R thì f(x0) = max f(x) với mọi x thuộc R. B. Nếu hàm số có giá trị cực tiểu là f(x0) với x0 thuộc R thì tồn tại x1 thuộc R sao cho f(x0) < f(x1). C. Nếu hàm số có giá trị cực đại là f(x0) với x0 thuộc R thì f(x0) = min f(x) với mọi x thuộc R. D. Nếu hàm số có giá trị cực tiểu là f(x0) với x0 thuộc R và có giá trị cực đại là f(x1) với x1 thuộc R thì f(x0) < f(x1). [ads] + Cho hàm số f(x) có đạo hàm liên tục trên R và thỏa mãn f(x) > 0, ∀x ∈ R. Cho biết f(0) = 1 và f'(x)/f(x) = 2 – 2x. Tất cả các giá trị thực của tham số m để phương trình f(x) = m có hai nghiệm thực phân biệt là? + Tập hợp các điểm biểu diễn số phức z thỏa mãn |z – i| = |2 – 3i – z| là? A. Đường tròn có phương trình x2 + y2 = 4. B. Đường thẳng có phương trình x + 2y + 1 = 0. C. Đường thẳng có phương trình x – 2y − 3 = 0. D. Đường elip có phương trình x2 + 4y2 = 4.
Đề thi học kì 2 Toán 12 năm 2019 - 2020 trường THPT Tân Túc - TP HCM
giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 12 đề thi học kì 2 Toán 12 năm học 2019 – 2020 trường THPT Tân Túc, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết.
Đề thi học kì 2 Toán 12 năm 2019 - 2020 trường THPT Thăng Long - TP HCM
giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 12 đề thi học kì 2 Toán 12 năm học 2019 – 2020 trường THPT Thăng Long, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết.