Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu tự học Toán 6 - Nguyễn Chín Em

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh tài liệu tự học Toán 6 do thầy Nguyễn Chín Em sưu tầm và biên soạn; tài liệu gồm 288 trang trình bày đầy đủ lý thuyết SGK, phân dạng toán và hướng dẫn giải các bài toán Số học và Hình học lớp 6. Khái quát nội dung tài liệu tự học Toán 6 – Nguyễn Chín Em: PHẦN I . SỐ HỌC. CHƯƠNG 1 . ÔN TẬP VỀ SỐ TỰ NHIÊN. 1 TẬP HỢP. PHẦN TỬ CỦA TẬP HỢP. + Dạng 1. Viết một tập hợp cho trước. + Dạng 2. Sử dụng các kí hiệu. 2 TẬP HỢP CÁC SỐ TỰ NHIÊN. + Dạng 1. Tìm số liền trước, liền sau của một số tự nhiên. + Dạng 2. Tìm các số tự nhiên thỏa mãn điều kiện cho trước. + Dạng 3. Ghi các số tự nhiên. + Dạng 4. Từ n chữ số khác nhau, viết tất cả các số có n chữ số khác nhau đó. 3 SỐ PHẦN TỬ CỦA MỘT TẬP HỢP – TẬP HỢP CON. + Dạng 1. Tìm số phần tử của một tập hợp. + Dạng 2. Xác định xem tập hợp A có là tập hợp con của tập hợp B không. + Dạng 3. Viết các tập hợp con của một tập hợp cho trước. 4 PHÉP CỘNG VÀ PHÉP NHÂN. + Dạng 1. Tính nhanh, tính hợp lí bằng cách áp dụng các tính chất của phép cộng và phép nhân. + Dạng 2. Tìm số chưa biết trong một đẳng thức. + Dạng 3. So sánh hai tổng hoặc hai tích mà không tính giá trị cụ thể của chúng. + Dạng 4. Tính tổng các số hạng của một dãy các số tự nhiên mà bất cứ hai số liền nhau nào cũng cách nhau d đơn vị. 5 PHÉP TRỪ VÀ PHÉP CHIA. + Dạng 1. Tính nhanh, tính hợp lí bằng cách áp dụng các tính chất của phép trừ, phép chia. + Dạng 2. Tìm số chưa biết trong một đẳng thức. + Dạng 3. Bài toán dẫn đến phép trừ và phép chia. + Dạng 4. Toán về phép chia có dư. 6 CHIA HAI LŨY THỪA CÙNG CƠ SỐ. + Dạng 1. Viết gọn các tích. + Dạng 2. So sánh hai lũy thừa. + Dạng 3. Viết một số dưới dạng một lũy thừa với số mũ lớn hơn. + Dạng 4. Viết kết quả của phép tính dưới dạng một lũy thừa. + Dạng 5. Tìm số mũ của lũy thừa trong một đẳng thức. + Dạng 6. Tìm cơ số của lũy thừa trong một đẳng thức. 7 THỨ TỰ THỰC HIỆN CÁC PHÉP TÍNH. + Dạng 1. Thực hiện các phép tính. + Dạng 2. So sánh giá trị hai biểu thức số. + Dạng 3. Tìm số chưa biết trong một đẳng thức. 8 TÍNH CHẤT CHIA HẾT CỦA MỘT TỔNG. + Dạng 1. Xét tính chia hết của một tổng, một hiệu, một tích. + Dạng 2. Tìm điều kiện của một số hạng để tổng hoặc hiệu chia hết cho một số. 9 DẤU HIỆU CHIA HẾT CHO 2, CHO 5, CHO 3, CHO 9. + Dạng 1. Nhận biết một số chia hết cho 2, cho 5, cho 3, cho 9. + Dạng 2. Viết các số chia hết cho 2, cho 5, cho 3, cho 9 hoặc các chữ số cho trước. + Dạng 3. Tìm số dư trong một phép chia mà không trực tiếp thực hiện phép chia đó. 10 ƯỚC VÀ BỘI. + Dạng 1. Tìm và viết tập hợp các ước của một số cho trước. + Dạng 2. Tìm và viết tập hợp các bội của một số cho trước. + Dạng 3. Nhận biết và viết tập hợp các ước chung của hai hay nhiều số. + Dạng 4. Nhận biết và viết tập hợp các bội chung của hai hay nhiều số. + Dạng 5. Chứng minh tính chất của các số. 11 SỐ NGUYÊN TỐ. HỢP SỐ. BẢNG SỐ NGUYÊN TỐ. + Dạng 1. Nhận biết số nguyên tố, hợp số. + Dạng 2. Điền chữ số để được số nguyên tố hay hợp số. + Dạng 3. Phân tích một số ra thừa số nguyên tố. + Dạng 4. Phân tích một số ra thừa số nguyên tố để tìm các ước của một số, để tính số lượng các ước số của số đó. + Dạng 5. Vài ứng dụng khác của việc phân tích một số ra thừa số nguyên tố. 12 ƯỚC CHUNG LỚN NHẤT. + Dạng 1. Tìm ƯCLN của hai hay nhiều số. + Dạng 2. Tìm ước chung thỏa mãn điều kiện cho trước. + Dạng 3. Nhận biết hai số nguyên tố cùng nhau. Chứng minh hai số nguyên tố cùng nhau. + Dạng 4. Bài toán đưa đến việc tìm ƯCLN của hai hay nhiều số. 13 BỘI CHUNG NHỎ NHẤT. + Dạng 1. Tìm BCNN của hai hay nhiều số. + Dạng 2. Tìm các bội chung thỏa mãn điều kiện cho trước. + Dạng 3. Bài toán đưa đến việc tìm BCNN của hai hay nhiều số. 14 ÔN TẬP CHƯƠNG I. + Dạng 1. Xác định số phần tử của một tập hợp. + Dạng 2. Nhận biết và viết tập hợp con của một tập hợp cho trước. + Dạng 3. Thực hiện phép tính. + Dạng 4. Tìm số chưa biết trong một đẳng thức. + Dạng 5. Nhận biết các số chia hết cho một số và tìm số dư trong phép chia. + Dạng 6. Tìm ƯC, BC, ƯCLN và BCNN. CHƯƠNG 2 . SỐ NGUYÊN. 1 TẬP HỢP CÁC SỐ NGUYÊN. + Dạng 1. Biểu thị các đại lượng có hai hướng ngược nhau. + Dạng 2. Biểu diễn số nguyên trên trục số. + Dạng 3. Đọc và sử dụng các kí hiệu. + Dạng 4. Tìm số đối của một số cho trước. 2 THỨ TỰ TRONG TẬP HỢP CÁC SỐ NGUYÊN. + Dạng 1. Tìm giá trị tuyệt đối của một số cho trước và ngược lại. + Dạng 2. So sánh các số nguyên. + Dạng 3. Tìm các số nguyên thuộc một khoảng cho trước. 3 CỘNG HAI SỐ NGUYÊN CÙNG DẤU. + Dạng 1. Cộng hai số nguyên. + Dạng 2. Tính nhanh, tính hợp lí giá trị của một tổng. + Dạng 3. Tìm điều kiện của một số nguyên để được một đẳng thức đúng (đẳng thức có chứa dấu giá trị tuyệt đối). 4 PHÉP TRỪ HAI SỐ NGUYÊN. + Dạng 1. Trừ số nguyên. + Dạng 2. Tìm số chưa biết trong một đẳng thức có phép cộng, phép trừ các số nguyên. Dạng 3. Tính các tổng đại số. Dạng 4. Sử dụng quy tắc chuyển vế để tìm số hưa biết trong một đẳng thức. 5 NHÂN HAI SỐ NGUYÊN KHÁC DẤU. + Dạng 1. Nhân hai số nguyên. + Dạng 2. Tính nhanh, tính hợp lí giá trị của một biểu thức. + Dạng 3. Xét dấu lũy thừa, của tích trong phép nhân nhiều số nguyên. + Dạng 4. Tìm số chưa biết trong một đẳng thức có phép nhân. 6 BỘI VÀ ƯỚC CỦA MỘT SỐ NGUYÊN. + Dạng 1. Tìm bội của một số nguyên cho trước. + Dạng 2. Tìm các ước của một số nguyên cho trước. + Dạng 3. Tìm x trong đẳng thức ax = b (a khác 0). + Dạng 4. Xét tính chia hết của một tổng, một hiệu, một tích. + Dạng 5. Tìm số nguyên x thỏa mãn điều kiện về chia hết. 7 ÔN TẬP CHƯƠNG II. + Dạng 1. So sánh các số, so sánh giá trị tuyệt đối với một số. + Dạng 2. Tìm giá trị lớn nhất, giá trị nhỏ nhất của một biểu thức. + Dạng 3. Thực hiện các phép tính về số nguyên. + Dạng 4. Tìm x thỏa mãn điều kiện cho trước. + Dạng 5. Xét tính chia hết của một số. CHƯƠNG 3 . PHÂN SỐ. 1 MỞ RỘNG KHÁI NIỆM PHÂN SỐ. + Dạng 1. Viết các phân số. Tính giá trị của phân số. + Dạng 2. Biểu diễn số đo giá trị các đại lượng bằng phân số. + Dạng 3. Tìm điều kiện để phân số tồn tại, để giá trị của phân số là một số nguyên. + Dạng 4. Nhận biết các cặp phân số bằng nhau, không bằng nhau. + Dạng 5. Tìm số chưa biết trong đẳng thức của hai phân số. + Dạng 6. Lập các phân số bằng nhau từ một đẳng thức cho trước. 2 TÍNH CHẤT CƠ BẢN CỦA PHÂN SỐ. + Dạng 1. Viết các phân số bằng nhau. + Dạng 2. Rút gọn phân số. + Dạng 3. Nhận biết phân số tối giản. 3 QUY ĐỒNG MẪU NHIỀU PHÂN SỐ. + Dạng 1. Quy đồng mẫu các phân số cho trước. + Dạng 2. So sánh các phân số. + Dạng 3. So sánh hai phân số mà không quy đồng mẫu, không quy đồng tử. 4 PHÉP CỘNG PHÂN SỐ. + Dạng 1. Cộng hai hay nhiều phân số. + Dạng 2. Các bài toán dẫn tới phép cộng phân số. + Dạng 3. Tính tổng các phân số nhanh gọn, hợp lí. + Dạng 4. Viết một phân số thành tổng của nhiều phân số có mẫu khác nhau. 5 PHÉP TRỪ PHÂN SỐ. + Dạng 1. Tìm đối số của số cho trước. + Dạng 2. Trừ phân số. + Dạng 3. Thực hiện một dãy các phép tính cộng và trừ phân số. + Dạng 4. Tìm số hạng chưa biết một tổng một hiệu. + Dạng 5. Các bài toán dẫn đến phép trừ phân số. + Dạng 6. Tính tổng các phân số theo quy luật. 6 PHÉP NHÂN PHÂN SỐ. + Dạng 1. Nhân hai hay nhiều phân số. + Dạng 2. Các bài toán dẫn đến phép nhân phân số. + Dạng 3. Tính tích các phân số nhanh gọn hợp lí. + Dạng 4. Tính tổng các phân số viết theo quy luật. 7 PHÉP CHIA PHÂN SỐ. + Dạng 1. Tìm số nghịch đảo của một số cho trước. + Dạng 2. Chia phân số. + Dạng 3. Tìm một thành phần chưa biết trong phép nhân, phép chia. + Dạng 4. Các bài toán dẫn đến phép chia phân số. + Dạng 5. Tính giá trị của biểu thức. 8 HỖN SỐ. SỐ THẬP PHÂN. PHẦN TRĂM. + Dạng 1. Viết các phân số dưới dạng hỗn số và ngược lại. + Dạng 2. Viết các phân số dưới dạng phân số thập phân, số thập phân, phần trăm và ngược lại. + Dạng 3. Cộng và trừ hỗn số. + Dạng 4. Nhân và chia hỗn số. + Dạng 5. Phối hợp các phép tính về phân số, hỗn số, số thập phân. 9 TÌM GIÁ TRỊ PHÂN SỐ CỦA MỘT SỐ CHO TRƯỚC. + Dạng 1. Tìm giá trị phân số của một số cho trước. + Dạng 2. Tính nhẩm giá trị phần trăm của một số cho trước. + Dạng 3. Bài toán dẫn đến việc tìm giá trị phân số của một số cho trước. 10 TÌM MỘT SỐ BIẾT GIÁ TRỊ PHÂN SỐ CỦA NÓ. + Dạng 1. Tìm một số biết giá trị phân số của nó. + Dạng 2. Bài toán dẫn đến tìm một số biết giá trị phân số của nó. + Dạng 3. Phối hợp hai bài toán cơ bản về phân số: Tìm giá trị phân số của một số cho trước và tìm một số biết giá trị phân số của nó. 11 TÌM TỈ SỐ CỦA HAI SỐ. + Dạng 1. Tìm tỉ số của hai số. + Dạng 2. Tìm tỉ số phần trăm của hai số. + Dạng 3. Tìm hai số biết tỉ số của chúng cùng với tổng hoặc hiệu của hai số đó. + Dạng 4. Các bài toán liên quan đến tỉ lệ xích. + Dạng 5. Dựng biểu đồ phần trăm theo các số liệu cho trước. + Dạng 6. Đọc biểu đồ cho trước. 12 ÔN TẬP CHƯƠNG III. + Dạng 1. Khái niệm phân số, giá trị của phân số. + Dạng 2. So sánh các phân số. + Dạng 3. Tìm phân số thỏa mãn điều kiện cho trước. + Dạng 4. Thực hiện các phép tính về phân số. + Dạng 5. Giải các bài toán cơ bản về phân số. [ads] PHẦN II . HÌNH HỌC. CHƯƠNG 4 . ĐOẠN THẲNG. 1 ĐIỂM – ĐƯỜNG THẲNG. + Dạng 1. Nhận biết điểm thuộc đường thẳng và đường thẳng đi qua điểm. + Dạng 2. Vẽ điểm, vẽ đường theo điều kiện cho trước. 2 BA ĐIỂM THẲNG HÀNG. + Dạng 1. Nhận biết ba điểm thẳng hàng, điểm nằm giữa, nằm khác phía, nằm cùng phía. + Dạng 2. Xác định điểm nằm giữa, nằm khác phía, nằm cùng phía. 3 ĐƯỜNG THẲNG ĐI QUA HAI ĐIỂM. + Dạng 1. Đường thẳng đi qua hai điểm. + Dạng 2. Giao điểm của đường thẳng. + Dạng 3. Đếm số đường thẳng. + Dạng 4. Chứng tỏ nhiều điểm thẳng hàng. 4 TIA. + Dạng 1. Nhận biết tia, hai tia đối nhau, hai tia trùng nhau. + Dạng 2. Nhận biết điểm nằm giữa hai điểm còn lại. 5 ĐOẠN THẲNG. + Dạng 1. Nhận biết đoạn thẳng. Dạng 2. Nhận biết đoạn thẳng cắt đoạn thẳng, cắt tia, cắt đường thẳng. Dạng 3. Số đoạn thẳng. Dạng 4. So sánh độ dài đoạn thẳng. 6 KHI NÀO THÌ AM + MB = AB? + Dạng 1. Tính độ dài đoạn thẳng. + Dạng 2. Xác định điểm nằm giữa hai điểm khác. 7 VẼ ĐOẠN THẲNG CHO BIẾT ĐỘ DÀI. + Dạng 1. Tính độ dài đoạn thẳng. + Dạng 2. Xác định điểm nằm giữa hai điểm khác. 8 TRUNG ĐIỂM CỦA ĐOẠN THẲNG. + Dạng 1. Nhận biết một điểm là trung điểm của đoạn thẳng. + Dạng 2. Tính độ dài đoạn thẳng. 9 ÔN TẬP CHƯƠNG I. + Dạng 1. Nhận biết khái niệm điểm, đường thẳng, tia, đoạn thẳng, nằm cùng phía, nằm khác phía. + Dạng 2. Điểm nằm giữa hai điểm khác. + Dạng 3. Tính độ dài đoạn thẳng. + Dạng 4. Số đoạn thẳng, số đường thẳng. CHƯƠNG 5 . GÓC. 1 NỬA MẶT PHẲNG. + Dạng 1. Đoạn thẳng cắt hay không cắt đường thẳng. + Dạng 2. Nhận biết một tia nằm giữa hai tia. 2 GÓC. + Dạng 1. Nhận biết góc, viết kí hiệu góc. + Dạng 2. Đếm số góc. + Dạng 3. Điểm nằm trong góc. 3 SỐ ĐO GÓC. + Dạng 1. Dùng thước đo góc để đo góc. + Dạng 2. So sánh góc. 4 KHI NÀO THÌ XOY + YOZ = XOZ? + Dạng 1. Tính số đo góc. + Dạng 2. Xác định hai góc phụ nhau, bù nhau. + Dạng 3. Xác định một tia có nằm giữa hai tia còn lại hay không. 5 VẼ GÓC CHO BIẾT SỐ ĐO. + Dạng 1. Tính số đo góc. + Dạng 2. Xác định một tia có nằm giữa hai tia còn lại hay không. 6 TIA PHÂN GIÁC CỦA GÓC. + Dạng 1. Tính số đo góc. + Dạng 2. Chứng tỏ một tia là tia phân giác của một góc. 7 ĐƯỜNG TRÒN. + Dạng 1. Nhận biết vị trí của một điểm đối với đường tròn. + Dạng 2. Đếm số dây cung, số cung của đường tròn. 8 TAM GIÁC. + Dạng 1. Nhận dạng tam giác và các yếu tố. + Dạng 2. Vẽ tam giác. + Dạng 3. Tính số tam giác tạo thành. 9 ÔN TẬP CHƯƠNG II. + Dạng 1. Góc phụ nhau, bù nhau và kề bù. + Dạng 2. Tia nằm giữa, không nằm giữa hai tia còn lại. + Dạng 3. Tính số đo góc. + Dạng 4. Số góc, số cung, số dây cung.

Nguồn: toanmath.com

Đọc Sách

Tóm tắt lý thuyết và bài tập trắc nghiệm hình chữ nhật, hình thoi, hình bình hành, hình thang cân
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề hình chữ nhật, hình thoi, hình bình hành, hình thang cân, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6. A. TÓM TẮT LÝ THUYẾT 1. Hình chữ nhật. Hình chữ nhật ABCD có: + Bốn đỉnh: A, B, C, D. + Hai cạnh đối diện song song: AB song song với CD, BC song song với AD. + Hai cạnh đối diện bằng nhau: AD = BC; AB = DC. + Bốn góc đỉnh A, B, C, D bằng nhau và bằng góc vuông. + Hai đường chéo bằng nhau và cắt nhau tại trung điểm mỗi đường: OA = OC = OB = OD. 2. Hình thoi. Hình thoi ABCD có: + Bốn đỉnh: A, B, C, D. + Hai cạnh đối diện song song: AB song song với CD, BC song song với AD. + Bốn cạnh bằng nhau: AD = BC = AB = DC. + Hai đường chéo vuông góc với nhau: AC, BD vuông góc với nhau. 3. Hình bình hành. Hình bình hành ABCD có: + Bốn đỉnh: A, B, C, D. + Hai cạnh đối diện song song: AB song song với CD, BC song song với AD. + Hai cạnh đối diện bằng nhau: AD = BC; AB = DC. + Hai cặp góc đối diện bằng nhau: góc đỉnh A bằng góc đỉnh C, góc đỉnh B bằng góc đỉnh D. + Hai đường chéo cắt nhau tại trung điểm mỗi đường: OA = OC = OB = OD. 4. Hình thang cân. Hình thang cân ABCD có: + Bốn đỉnh: A, B, C, D. + Hai cạnh đáy song song: AB song song với CD. + Hai cạnh bên bằng nhau: AD = BC. + Hai góc kề 1 đáy bằng nhau: góc đỉnh A bằng góc đỉnh C, góc đỉnh B bằng góc đỉnh D. + Hai đường chéo bằng nhau: AC = BD. B. BÀI TẬP TRẮC NGHIỆM
Tóm tắt lý thuyết và bài tập trắc nghiệm hình tam giác đều, hình vuông, hình lục giác đều
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề hình tam giác đều, hình vuông, hình lục giác đều, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6. A. TÓM TẮT LÝ THUYẾT 1. Hình vuông. Hình vuông ABCD có: + Bốn đỉnh A B C D. + Bốn cạnh bằng nhau AB BC CD DA. + Bốn góc bằng nhau và bằng góc vuông. + Hai đường chéo là AC và BD. 2. Tam giác đều. Tam giác đều ABC có: + Ba đỉnh A B C. + Ba cạnh bằng nhau AB BC CA. + Ba góc đỉnh A B C bằng nhau. 3. Lục giác đều. Hình ABCDEF gọi là hình lục giác đều có: + Sáu đỉnh A, B, C, D, E, F. + Sáu cạnh bằng nhau AB BC CD DE EF FA. + Sáu góc đỉnh A, B, C, D, E, F bằng nhau. Ba đường chéo chính là AD, BE, CF. B. BÀI TẬP TRẮC NGHIỆM
Tóm tắt lý thuyết và bài tập trắc nghiệm phép chia hết, ước và bội của một số nguyên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề phép chia hết, ước và bội của một số nguyên, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6 phần Số học. A. TÓM TẮT LÝ THUYẾT 1. Phép chia hết. Với a b b 0 nếu có số nguyên q sao cho a bq thì ta có phép chia hết a b q và ta nói a chia hết cho b, kí hiệu là a b. Thương của hai số nguyên trong phép chia hết là một số dương nếu hai số đó cùng dấu và là một số âm khi hai số đó khác dấu. 2. Ước và bội. Nếu a b thì ta gọi a là một bội của b và b là một ước của a a b b. Nếu a là một bội của b thì -a cũng là một bội của b. Nếu b là một ước của a thì -b cũng là một ước của a. Chú ý: Số 0 là bội của mọi số nguyên khác 0. Số 0 không phải là ước của bất kì số nguyên nào. Các số 1 và -1 là ước của mọi số nguyên. Nếu d vừa là ước của a, vừa là ước của b thì ta gọi d là một ước chung của a và b a b d d. Trong tập hợp các số nguyên cũng có các tính chất về chia hết tương tự như trong tập số tự nhiên. 3. Cách chia hai số nguyên (trường hợp chia hết). a. Nếu số bị chia bằng 0 và số chia khác 0 thì thương bằng 0. b. Nếu chia hai số nguyên khác 0 thì: Bước 1: Chia phần tự nhiên của hai số. Bước 2: Đặt dấu “+” trước kết quả nếu hai số cùng dấu. Đặt dấu “-” trước kết quả nếu hai số trái dấu. 4. Cách tìm ước và bội. Muốn tìm tất cả các ước của một số nguyên a, ta lấy các ước dương của a cùng với các số đối của chúng. Muốn tìm các bội của một số nguyên, ta nhân số đó với 0; 1; 2; 3; …. B. BÀI TẬP TRẮC NGHIỆM Dạng 1: Tìm bội và ước của một nguyên. Để tìm bội của một số nguyên, ta nhân số đó với 0; 1; 2; 3; …. Để tìm ước của một số nguyên dương, ta phân tích số đó ra thừa số nguyên tố rồi tìm các ước tự nhiên và số đối của các ước đó. Để tìm ước của một số nguyên âm, ta phân tích phần tự nhiên của số đó (hoặc số đối của số đó) ra thừa số nguyên tố rồi tìm các ước tự nhiên và số đối của các ước đó. Dạng 2: Xét tính chia hết của một tổng, hiệu và tích cho một số. Cho a b c c Nếu a c a b c Nếu a c b c a b c a b c Nếu a c b. Chú ý : a c b c thì không thế kết luận được về tính chia hết của a b a b cho c. Dạng 3: Tìm số nguyên x thỏa mãn điều kiện chia hết. Phương pháp: Cho a b c c Nếu a b c b c Nếu a c b c a b c Nếu a c a b. Chú ý: a c và a b c thì không thế kết luận được về tính chia hết của b cho c.
Tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề phép nhân số nguyên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề phép nhân số nguyên, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6 phần Số học. A. TÓM TẮT LÝ THUYẾT 1. Lý thuyết. 1. Nhân hai số nguyên khác dấu. + Bước 1: Bỏ dấu “-” trước số nguyên âm, giữ số nguyên còn lại. + Bước 2: Lấy tích hai số nguyên dương nhận được ở bước 1. + Bước 3: Đặt dấu “-” trước kết quả nhận được ở bước 2 ta có tích cần tìm. 2. Nhân hai số nguyên cùng dấu âm. – Quy tắc: + Bước 1: Bỏ dấu “-” trước cả hai số nguyên âm. + Bước 2: Lấy tích hai số nguyên dương nhận được ở bước 1 ta có tích cần tìm. 3. Nhân hai số nguyên cùng dấu dương. Khi nhân hai số nguyên dương ta nhân như nhân hai số tự nhiên. 4. Quy tắc dấu khi thực hiện phép nhân, chia số nguyên. Cách nhận biết dấu của kết quả khi thực hiện phép nhân hai số nguyên. 5. Tính chất của phép nhân số nguyên. Phép nhân số nguyên có các tính chất: 1. Giao hoán. 2. Kết hợp. 3. Phân phối của phép nhân với phép cộng, trừ. 2. Các dạng toán thường gặp. a) Dạng 1: Thực hiện phép nhân số nguyên. + Thực hiện theo quy tắc nhân hai số nguyên cùng dấu và khác dấu: Với hai số nguyên dương a b ta có: a b a b ab. + Chú ý quy tắc dấu khi nhân hai số nguyên. + Quan sát một số biểu thức có thể tính nhanh khi thực hiện phép nhân theo các tính chất: Giao hoán; Kết hợp; Phân phối của phép nhân với phép cộng, trừ. b) Dạng 2: Tìm x. + Xét xem: Điều cần tìm (thường được gọi là x) hoặc biểu thức liên quan đóng vai trò là gì trong phép toán (số hạng, số trừ, số bị trừ, thừa số, số chia, số bị chia) (Số hạng) = (Tổng) – (Số hạng đã biết) (Số trừ) = (Số bị trừ – Hiệu) (Số bị trừ) = (Hiệu) + (Số trừ) (Thừa số) = (Tích) : (Thừa số đã biết) (Số chia) = (Số bị chia) :(Thương) (Số bị chia) = (Thương). (Số chia). + Thực hiện theo hướng dẫn trên tìm các biểu thức liên quan đến x trước (nếu có) sau đó mới xét tìm x. Chú ý sử dụng nhiều trường hợp (Số bị chia) = (Thương) . (Số chia). c) Dạng 3: Toán có lời văn (Toán thực tế). + Đọc kĩ đề bài tóm tắt bài toán: Xem bài toán cho biết gì và yêu cầu tìm gì? + Biểu thị số nguyên âm trong bài (nếu có). Lưu ý số nguyên âm thường biểu thị nhiệt độ âm, độ cao dưới mực nước biển, số tiền lỗ, số điểm bị trừ, năm trước công nguyên. + Dùng kiến thức thực tế xác định đúng phép nhân và thực hiện. Ví dụ: Quãng đường đi được = Vận tốc . Thời gian. Tiền công = Số tiền của một sản phẩm . Số sản phẩm. Số điểm = Số câu trả lời . Số điểm của một câu. B. BÀI TẬP