Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG lớp 12 môn Toán lần 2 năm 2019 2020 trường THPT Đồng Đậu Vĩnh Phúc

Nội dung Đề thi HSG lớp 12 môn Toán lần 2 năm 2019 2020 trường THPT Đồng Đậu Vĩnh Phúc Bản PDF Ngày … tháng 11 năm 2019, trường THPT Đồng Đậu, tỉnh Vĩnh Phúc tổ chức kỳ thi chọn học sinh giỏi Toán lớp 12 cấp trường lần thứ 2 năm học 2019 – 2020, nhằm tiếp tục tuyển chọn các em học sinh giỏi Toán lớp 12 vào đội tuyển của trường, đồng thời giúp đội tuyển nhà trường rèn luyện, hướng đến kỳ thi học sinh giỏi Toán THPT cấp tỉnh. Đề thi HSG Toán lớp 12 lần 2 năm học 2019 – 2020 trường THPT Đồng Đậu – Vĩnh Phúc được biên soạn theo hình thức tự luận, đề gồm 01 trang với 10 bài toán, thời gian làm bài 180 phút, nội dung đề bao quát chương trình Toán lớp 10, Toán lớp 11 và Toán lớp 12, đề thi có lời giải chi tiết. Trích dẫn đề thi HSG Toán lớp 12 lần 2 năm 2019 – 2020 trường THPT Đồng Đậu – Vĩnh Phúc : + Một mảnh đất hình chữ nhật ABCD có chiều dài AB = 25m, chiều rộng AD = 20m được chia thành hai phần bằng nhau bởi vạch chắn MN (M, N lần lượt là trung điểm BC và AD). Một đội xây dựng làm một con đường đi từ A đến C qua vạch chắn MN, biết khi làm đường trên miền ABMN mỗi giờ làm được 15m và khi làm trong miền CDNM mỗi giờ làm được 30m. Tính thời gian ngắn nhất mà đội xây dựng làm được con đường đi từ A đến C. [ads] + Trong cuộc thi: “Thiết kế và trình diễn các trang phục dân tộc” do Đoàn trường THPT Đồng Đậu tổ chức vào tháng 11 năm 2019 với thể lệ mỗi lớp tham gia một tiết mục. Kết quả có 12 tiết mục đạt giải trong đó có 4 tiết mục khối 12, có 5 tiết mục khối 11và 3 tiết mục khối 10. Ban tổ chức chọn ngẫu nhiên 5 tiết mục biểu diễn chào mừng 26 tháng 3. Tính xác suất sao cho khối nào cũng có tiết mục được biểu diễn và trong đó có ít nhất hai tiết mục của khối 12. + Cho hình hộp đứng ABCD.A1B1C1D1 có các cạnh AB = AD = 2, AA1 = √3 và góc BAD = 60 độ. Gọi M, N lần lượt là trung điểm của các cạnh A1D1 và A1B1. Chứng minh rằng AC1 vuông góc với mặt phẳng (BDMN). + Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật có AB = 3, BC = 6, mặt phẳng (SAB) vuông góc với đáy, các mặt phẳng (SBC) và (SCD) cùng tạo với mặt phẳng (ABCD) các góc bằng nhau. Biết khoảng cách giữa hai đường thẳng SA và BD bằng 6. Tính thể tích khối chóp S.ABCD và cosin góc giữa hai đường thẳng SA và BD. + Trong mặt phẳng với hệ tọa độ (Oxy), cho tam giác ABC ngoại tiếp đường tròn tâm J(2;1). Biết đường cao xuất phát từ đỉnh A của tam giác ABC có phương trình: 2x + y – 10 = 0 và D(2;-4) là giao điểm thứ hai của AJ với đường tròn ngoại tiếp tam giác ABC. Tìm tọa độ các đỉnh của tam giác ABC biết B có hoành độ âm và B thuộc đường thẳng có phương trình x + y + 7 = 0.

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn HSG cấp huyện lớp 12 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Cao Bằng
Đề thi chọn HSG cấp huyện lớp 12 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Cao Bằng gồm 1 trang với 7 bài toán tự luận, thời gian làm bài 180 phút (không kể thời gian giao đề), đề thi có lời giải chi tiết và thang điểm. Trích dẫn đề thi : + Một trường trung học phổ thông có 12 học sinh giỏi gồm ba học sinh khối 10, bốn học sinh khối 11 và năm học sinh khối 12. Chọn sáu học sinh trong số học sinh giỏi đó, tính xác suất sao cho cả ba khối đều có học sinh được chọn. + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SA vuông góc với mặt phẳng đáy, góc giữa mặt phẳng (SBD) và mặt phẳng đáy bằng 60 độ. [ads] a. Tính thể tích khối chóp S.ABCD b. Tính khoảng cách từ điểm D đến mặt phẳng (SBC) + Trong mặt phẳng với hệ tọa độ Oxy, cho hình bình hành ABCD. Điểm M (-3; 0) là trung điểm của cạnh AB, điểm H(0; -1) là hình chiếu vuông góc của B trên AD và điểm G(4/3; 3) là trọng tâm của tam giác BCD. Tìm tọa độ các điểm B, D.
Đề thi học sinh giỏi môn Toán 12 năm học 2017 - 2018 trường THPT Đan Phượng - Hà Nội
Đề thi học sinh giỏi môn Toán 12 năm học 2017 – 2018 trường THPT Đan Phượng – Hà Nội gồm 5 bài toán tự luận, thời gian làm bài 180 phút. Đề thi có đáp án, lời giải chi tiết và thang điểm. Trích dẫn đề thi : + Cho hàm số: y = (x – 1)/2(x + 1) (C). Tìm những điểm M trên (C) sao cho tiếp tuyến với (C) tại M tạo với hai trục tọa độ một tam giác có trọng tâm nằm trên đường thẳng 4x + y = 0. [ads] + Cho hàm số y = x^3 – 3(m+1)x – 2 với m là tham số. Tìm các giá trị của m để đồ thị hàm số cắt trục Ox tại một điểm. + Cho tam giác ABC vuông tại A, D là một điểm nằm trong tam giác ABC sao cho CD = CA. M là một điểm trên cạnh AB sao cho góc BDM = 1/2.ACD, N là giao điểm của MD và đường cao AH của tam giác ABC. Chứng minh DM = DN. + Cho tam giác ABC cân tại A có AB = AC = a, góc BAC = 120 độ. Điểm S thay đổi trong không gian nhưng luôn nằm về 1 phía của mặt phẳng (ABC) và AS = a, góc SAB = 60 độ. Gọi H là hình chiếu của S trên mặt phẳng (ABC). a) Chứng minh rằng H thuộc đường thẳng cố định. b) Chứng minh rằng khi độ dài SH lớn nhất thì hai mặt phẳng (SAB) và (ABC) vuông góc với nhau và khi đó tính độ dài SC.
Đề thi chọn học sinh giỏi cấp tỉnh Toán 12 năm học 2017 - 2018 sở GD và ĐT Thái Nguyên
Đề thi chọn học sinh giỏi cấp tỉnh Toán 12 năm học 2017 – 2018 sở GD và ĐT Thái Nguyên gồm 5 bài toán tự luận, thời gian làm bài 180 phút. Kỳ thi diễn ra vào ngày 12/10/2017.
Đề thi chọn HSG cấp tỉnh lớp 12 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Hải Dương
Đề thi chọn học sinh giỏi (HSG) cấp tỉnh lớp 12 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Hải Dương gồm 5 bài toán tự luận, có lời giải chi tiết và thang điểm. Trích dẫn đề thi : + Một công ty muốn làm một đường ống dẫn dầu từ một kho A ở trên bờ biển đến một vị trí B trên một hòn đảo. Hòn đảo cách bờ biển 6 km. Gọi C là điểm trên bờ sao cho BC vuông góc với bờ biển. Khoảng cách từ A đến C là 9 km. Người ta cần xác định một vị trí D trên AC để lắp ống dẫn theo đường gấp khúc ADB. Tính khoảng cách AD để số tiền chi phí thấp nhất, biết rằng giá để lắp đặt mỗi km đường ống trên bờ là 100.000.000 đồng và dưới nước là 260.000.000 đồng. [ads] + Trong mặt phẳng Oxy, cho đường tròn (I) có hai đường kính AB và MN với A B (1;3), (3; -1). Tiếp tuyến của (I) tại B cắt các đường thẳng AM và AN lần lượt tại E và F. Tìm tọa độ trực tâm H của tam giác MEF sao cho H nằm trên đường thẳng d: x – y + 6 = 0 và có hoành độ dương. + Tìm tất cả các giá trị của m để đồ thị hàm số y = x^3 – 3mx + 1 có hai điểm cực trị A, B sao cho diện tích ΔIAB bằng 8√2.