Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi tỉnh Toán THCS năm 2022 2023 sở GD ĐT Thanh Hóa

Nội dung Đề học sinh giỏi tỉnh Toán THCS năm 2022 2023 sở GD ĐT Thanh Hóa Bản PDF - Nội dung bài viết Đề học sinh giỏi tỉnh Toán THCS năm 2022 - 2023 sở GD ĐT Thanh Hóa Đề học sinh giỏi tỉnh Toán THCS năm 2022 - 2023 sở GD ĐT Thanh Hóa Xin chào quý thầy cô và các em học sinh lớp 9! Hôm nay, Sytu xin giới thiệu đến các bạn đề thi chọn học sinh giỏi cấp tỉnh môn Toán THCS năm học 2022 - 2023 của sở Giáo dục và Đào tạo tỉnh Thanh Hóa. Trích dẫn một số câu hỏi từ đề thi: Tìm tất cả các bộ số nguyên (m; p; q) thỏa mãn: 2m.p2 + 1 = q5 trong đó m > 0; p và q là hai số nguyên tố. Cho a, b là hai số nguyên thỏa mãn a khác b và ab(a + b) chia hết cho a2 + ab + b2. Chứng minh rằng |a − b| > 3ab. Cho tam giác ABC nhọn nội tiếp đường tròn tâm O bán kính R. Đường tròn tâm I đường kính BC cắt các cạnh AB và AC lần lượt ở M và N. Các tia BN và CM cắt nhau tại H. Gọi K là giao điểm của IH với MN. Qua I kẻ đường thẳng song song với MN cắt các đường thẳng CM và BN lần lượt ở E và Q. Đề thi còn nhiều câu hỏi khác đòi hỏi sự tư duy và kiến thức sâu rộng của các em học sinh. Hy vọng rằng đề thi sẽ giúp các bạn rèn luyện kỹ năng giải quyết vấn đề và nắm vững kiến thức Toán trong chương trình học THCS.

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi cấp tỉnh lớp 9 môn Toán năm 2022 2023 sở GD ĐT Bà Rịa Vũng Tàu
Nội dung Đề học sinh giỏi cấp tỉnh lớp 9 môn Toán năm 2022 2023 sở GD ĐT Bà Rịa Vũng Tàu Bản PDF - Nội dung bài viết Đề học sinh giỏi cấp tỉnh lớp 9 môn Toán năm 2022-2023 Đề học sinh giỏi cấp tỉnh lớp 9 môn Toán năm 2022-2023 Chào mừng đến với Đề thi học sinh giỏi cấp tỉnh môn Toán lớp 9 năm học 2022-2023 của Sở Giáo dục và Đào tạo tỉnh Bà Rịa-Vũng Tàu. Kỳ thi sẽ diễn ra vào ngày 23 tháng 03 năm 2023. Đề thi bao gồm một số câu hỏi thú vị như sau: 1. Cho điểm A thuộc parabol (P): y = -x^2 với tung độ yA = -4. Hãy tìm tọa độ các điểm B thuộc (P) sao cho tam giác OAB vuông tại B. 2. Với điểm M nằm ngoài đường tròn (O), vẽ hai tiếp tuyến MA, MC của đường tròn (O) và vẽ cát tuyến MBD sao cho B nằm giữa M và D, BC < BD. Chứng minh một số điều đề ra. 3. Tiếp tuyến tại B của đường tròn (O) cắt đường thẳng MC tại N và cắt đường thẳng CD tại P; chứng minh A, E, P thẳng hàng. 4. Với điểm A nằm ngoài đường tròn (O), vẽ hai tiếp tuyến AB, AC của đường tròn (O) và vẽ cát tuyến AED không đi qua O cắt BC tại F. Xác định điểm G, H để có tứ giác CDHG nội tiếp đường tròn. Đây là một đề thi thú vị và thách thức, giúp học sinh rèn luyện khả năng tư duy logic và kỹ năng giải quyết vấn đề. Chúc quý thầy cô và các em học sinh thành công trên con đường học tập và phát triển!
Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 2023 sở GD ĐT An Giang
Nội dung Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 2023 sở GD ĐT An Giang Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán cấp tỉnh THCS An Giang năm 2022 - 2023 Đề thi học sinh giỏi Toán cấp tỉnh THCS An Giang năm 2022 - 2023 Xin chào quý thầy cô và các em học sinh lớp 9. Trong kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 9 THCS năm học 2022 - 2023 của sở Giáo dục và Đào tạo tỉnh An Giang, đã được lên lịch diễn ra vào thứ Bảy ngày 18 tháng 03 năm 2023. Nội dung đề thi bao gồm các câu hỏi sau: 1. Xác định tất cả các số nguyên có ba chữ số thỏa mãn tính chất: nếu bỏ chữ số đầu tiên ta được một số chính phương, nếu bỏ chữ số cuối cùng vẫn được một số chính phương. 2. Cho đường tròn (O) tâm O và đường kính AB. Kéo dài AB về phía B đến điểm S, kẻ cát tuyến SMC với đường tròn (O). Từ C vẽ dây CD vuông góc với AB; AM và BC cắt nhau tại N, AB và DM cắt nhau tại P. Yêu cầu: a) Chứng minh rằng NP song song với CD. b) Chứng tỏ rằng OP.OS = OA2. 3. Một quyển sách có 30 bài học, mỗi bài học bắt đầu ở một trang mới và có độ dài lần lượt là 1, 2, 3, ..., 30 trang (không theo thứ tự). Hỏi số lượng bài học lớn nhất bắt đầu từ trang đánh số lẻ của quyển sách là bao nhiêu? Hy vọng rằng đề thi sẽ giúp các em rèn luyện, củng cố kiến thức và kỹ năng Toán một cách hiệu quả. Chúc các em đạt kết quả cao trong kỳ thi sắp tới!
Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 2023 sở GD ĐT Ninh Thuận
Nội dung Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 2023 sở GD ĐT Ninh Thuận Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán THCS Ninh Thuận 2022-2023 Đề thi học sinh giỏi Toán THCS Ninh Thuận 2022-2023 Chào đón quý thầy cô và các em học sinh lớp 9! Đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 9 THCS năm học 2022-2023 của Sở Giáo dục và Đào tạo tỉnh Ninh Thuận sắp diễn ra vào ngày 11 tháng 03 năm 2023. Đề thi sẽ đặt ra những câu hỏi thú vị và thách thức, như việc tìm số tự nhiên nhỏ nhất thỏa điều kiện đặc biệt, hoặc chứng minh một điều kiện toán học. Ví dụ, bạn có thể phải chứng minh rằng tổng bình phương của ba số a, b, c luôn lớn hơn tích của chúng, hoặc giải một bài toán về tam giác đều với điểm di chuyển trên cạnh. Đề thi cũng có thể yêu cầu bạn vẽ hình và suy luận logic để tìm ra đáp án chính xác. Hãy chuẩn bị kỹ lưỡng và thực hành nhiều để đối phó tốt với những thách thức toán học phía trước. Chúc quý thầy cô và các em học sinh thuận lợi và thành công trong kỳ thi sắp tới!
Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 2023 sở GD ĐT Hà Giang
Nội dung Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 2023 sở GD ĐT Hà Giang Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán THCS cấp tỉnh Hà Giang năm 2022-2023 Đề thi học sinh giỏi Toán THCS cấp tỉnh Hà Giang năm 2022-2023 Xin chào quý thầy cô giáo và các em học sinh lớp 9! Hôm nay, chúng ta sẽ cùng nhau tìm hiểu về đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 9 THCS năm học 2022 – 2023 của sở Giáo dục và Đào tạo tỉnh Hà Giang. Đề thi bao gồm các bài toán thú vị và thách thức để kiểm tra kiến thức và kỹ năng của các em. Dưới đây là một số câu hỏi trong đề thi: 1. Cho Parabol (P): y = x2 và đường thẳng d: y = 2x - m. Hãy tìm giá trị của m sao cho đường thẳng d cắt parabol (P) tại hai điểm phân biệt với hoành độ x1, x2 thỏa mãn x12 + x22 = 5. 2. Cho x, y, z là ba số thực dương thỏa mãn: x + y + z = 23 và xy + yz + zx = 4. Hãy chứng minh rằng? 3. Trong tam giác ABC vuông tại A, với AB < AC và M là trung điểm của cạnh BC. Gọi P là một điểm bất kì trên đoạn AM. K, L lần lượt là các điểm nằm trên tia BP, CP sao cho AKB = ABC và ALC = ACB. Đường tròn (I) ngoại tiếp tam giác BPL cắt đường thẳng AB tại điểm F. Đường tròn (J) ngoại tiếp tam giác CPK cắt đường thẳng AC tại điểm E. Hãy chứng minh rằng: a) Tam giác BKA và BAP đồng dạng. b) Đường tròn IJ song song với đường FE. Hy vọng đề thi này sẽ giúp các em học sinh ôn tập và nâng cao kiến thức Toán của mình. Chúc quý thầy cô giáo và các em học sinh một kỳ thi thành công!