Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát chất lượng lớp 9 môn Toán năm 2021 2022 phòng GD ĐT Đống Đa Hà Nội

Nội dung Đề khảo sát chất lượng lớp 9 môn Toán năm 2021 2022 phòng GD ĐT Đống Đa Hà Nội Bản PDF - Nội dung bài viết Đề khảo sát chất lượng lớp 9 môn Toán năm 2021 - 2022 Đề khảo sát chất lượng lớp 9 môn Toán năm 2021 - 2022 Sytu xin gửi đến thầy cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán năm học 2021 - 2022 của phòng Giáo dục và Đào tạo quận Đống Đa, thành phố Hà Nội. Kỳ thi sẽ diễn ra vào ngày 26 tháng 04 năm 2022 và bao gồm đề thi, đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Ví dụ về một bài toán trong đề khảo sát chất lượng Toán lớp 9 năm 2021 - 2022 của phòng GD&ĐT Đống Đa - Hà Nội: - Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Ô tô vận tải cần chở hàng từ Hà Nội đến Hoa Lư - Ninh Bình dài 120 km trong thời gian dự tính. Vì khâu xếp hàng mất nhiều thời gian, ô tô xuất phát chậm hơn 36 phút. Để đến đúng thời gian dự định, xe phải tăng vận tốc thêm 10 km/h. Yêu cầu tính vận tốc dự tính ban đầu của xe. - Về phần bài toán khác, học sinh sẽ phải tính diện tích phần giấy để bọc vỏ lon nước ngọt dạng hình trụ có đường kính đáy là 6,5 cm và chiều cao là 12 cm. - Ngoài ra, học sinh sẽ phải giải một bài toán tam giác với các yêu cầu khác nhau, như chứng minh một số tính chất của các tam giác và tứ giác. Đề khảo sát chất lượng môn Toán lớp 9 năm học 2021 - 2022 của phòng GD&ĐT Đống Đa - Hà Nội không chỉ giúp học sinh ôn tập kiến thức mà còn giúp họ rèn luyện kỹ năng giải quyết vấn đề và suy luận logic.

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát chất lượng Toán 9 năm 2020 - 2021 phòng GDĐT Nghi Lộc - Nghệ An
Đề khảo sát chất lượng Toán 9 năm 2020 – 2021 phòng GD&ĐT Nghi Lộc – Nghệ An gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 120 phút. Trích dẫn đề khảo sát chất lượng Toán 9 năm 2020 – 2021 phòng GD&ĐT Nghi Lộc – Nghệ An : + Tìm phương trình đường thẳng (d) đi qua M(1;-2) và N(4;4). + Một tổ sản xuất phải làm 260 sản phẩm trong một thời gian nhất định. Trên thực tế mỗi ngày tổ đều làm vượt mức 3 sản phẩm, do đó tổ đã làm xong trước thời hạn 1 ngày và làm được 261 sản phẩm. Hỏi theo kế hoạch, mỗi ngày tổ sản xuất bao nhiêu sản phẩm? + Cho đường tròn (O) có đường kính AB = 2R và lấy điểm C thuộc đường tròn đó (C khác A, B). Lấy điểm D thuộc dây BC (D khác B, C). Tia AD cắt cung nhỏ BC tại điểm E, tia AC cắt tia BE tại điểm F. a) Chứng minh tứ giác CDEF nội tiếp. b) Chứng minh: DA.DE = DB.DC. c) Chứng minh: CFD = OCB. d) Gọi I là trung điểm FD, r là bán kính đường tròn nội tiếp tam giác OCI và OI = a. Chứng minh rằng?
Đề khảo sát Toán 9 lần 2 năm 2020 - 2021 trường THCS Lê Quý Đôn - Hà Nội
Thứ Tư ngày 28 tháng 04 năm 2021, trường THCS Lê Quý Đôn, quận Cầu Giấy, thành phố Hà Nội tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 9 năm học 2020 – 2021 lần thứ hai. Đề khảo sát Toán 9 lần 2 năm 2020 – 2021 trường THCS Lê Quý Đôn – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút. Trích dẫn đề khảo sát Toán 9 lần 2 năm 2020 – 2021 trường THCS Lê Quý Đôn – Hà Nội : + Cho biểu thức A và B. a) Tính giá trị biểu thức A khi x = 1/9. b) Rút gọn biểu thức B. c) Đặt P = B : A. Tìm giá trị của x để P nhận giá trị nguyên. + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Một xí nghiệp sản xuất nước mắm dự định thu mua 120 tấn cá trong một thời gian nhất định, nhờ đổi mới phương pháp thu mua xí nghiệp đã mua vượt mức 6 tấn mỗi tuần. Vì vậy xí nghiệp đã hoàn thành kế hoạch sớm hơn 1 tuần và vượt mức 10 tấn cá. Tính số cá mà xí nghiệp phải thu mua mỗi tuần theo kế hoạch. + Để làm một mô hình cái bút chì trang trí, người ta dùng một khối gỗ hình trụ và một khối gỗ hình nón có cùng đường kính đáy chồng khít lên nhau. Khối gỗ hình trụ có đường kính đáy là 20cm, chiều cao là 30cm. Khối gỗ hình nón có chiều cao là 15cm. Tính thể tích gỗ cần dùng để làm mô hình này.
Đề khảo sát lần 2 Toán 9 năm 2020 - 2021 phòng GDĐT Thanh Trì - Hà Nội
Đề khảo sát lần 2 Toán 9 năm học 2020 – 2021 phòng GD&ĐT UBND huyện Thanh Trì, thành phố Hà Nội được biên soạn theo hình thức đề thi tự luận, đề gồm 01 trang với 05 bài toán, thời gian làm bài 120 phút. Trích dẫn đề khảo sát lần 2 Toán 9 năm 2020 – 2021 phòng GD&ĐT Thanh Trì – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Theo kế hoạch, một xưởng phải sản xuất 280 chai nước rửa tay trong một thời gian quy định. Thực tế để đáp ứng nhu cầu của khách hàng trong mùa dịch COVID 19, mỗi giờ xưởng đó sản xuất thêm 5 chai so với kế hoạch nên không những hoàn thành công việc trước 2 giờ mà còn sản xuất được thêm 20 chai nước rửa tay nữa. Hỏi theo kế hoạch, mỗi giờ xưởng đó phải sản xuất bao nhiêu chai nước rửa tay? + Để hưởng ứng cuộc vận động giảm thiểu rác thải nhựa dùng một lần, một nhà hàng dùng hộp giấy để đựng đồ ăn. Hộp giấy có dạng hình trụ, có đường kính đáy là 20cm, chiều cao 7cm và có nắp đậy. Tính diện tích giấy để sản xuất được 10 hộp giấy như trên, biết rằng diện tích giấy các mép dán vỏ hộp không đáng kể và cho π = 3,14. + Cho đường tròn (O;R) và đường thẳng d không có điểm chung với đường tròn. Gọi M là một điểm thuộc đường thẳng d. Qua M kẻ hai tiếp tuyến MA; MB tới đường tròn. Gọi H là hình chiếu vuông góc của O trên đường thẳng d. 1) Chứng minh tứ giác OAMH nội tiếp. 2) Gọi giao điểm của AB với OH và OM lần lượt tại K và I. Chứng minh: OK.OH = OI.OM. 3) Đoạn thẳng OM cắt (O) tại E. Chứng minh E là tâm đường tròn nội tiếp tam giác MAB. Tìm vị trí điểm M trên đường thẳng d để diện tích tam giác OIK đạt giá trị lớn nhất.
Đề thi khảo sát chất lượng Toán 9 năm 2020 - 2021 sở GDĐT Thanh Hóa
Sáng Chủ Nhật ngày 25 tháng 04 năm 2021, sở Giáo dục và Đào tạo tỉnh Thanh Hóa tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 9 năm học 2020 – 2021. Đề thi khảo sát chất lượng Toán 9 năm 2020 – 2021 sở GD&ĐT Thanh Hóa được biên soạn theo hình thức đề thi 100% tự luận, đề gồm 01 trang với 05 bài toán, thời gian làm bài 120 phút. Trích dẫn đề thi khảo sát chất lượng Toán 9 năm 2020 – 2021 sở GD&ĐT Thanh Hóa : + Trong mặt phẳng tọa độ Oxy cho parabol (P): y = 1/2×2 và đường thẳng (d): y = 2x – m + 1 (với m là tham số). 1) Tìm m để đường thẳng (d) đi qua điểm A(-1;3). 2) Tìm m để (d) cắt (P) tại hai điểm phân biệt có tọa độ sao cho. + Cho đường tròn (O) đường kính AB. Vẽ tia tiếp tuyến Ax với đường tròn (O), trên tia Ax lấy điểm M bất kì khác A. Qua M vẽ cát tuyến MCD với đường tròn (O) (C nằm giữa M và D; C, D không cùng thuộc nửa mặt phẳng bờ AB; MO nằm giữa MA và MC). Kẻ OH vuông góc với CD tại H. 1) Chứng minh tứ giác AOHM nội tiếp. 2) Chứng minh: AM.AD = AC.DM. 3) Tia MO cắt các tia BC và BD lần lượt ở I và K. Chứng minh: AI = BK. + Cho x, y là các số thực tùy ý. Tìm giá trị lớn nhất của: A.