Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi huyện Toán 6 năm 2022 - 2023 phòng GDĐT Tiên Du - Bắc Ninh

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 đề thi chọn học sinh giỏi cấp huyện môn Toán 6 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Tiên Du, tỉnh Bắc Ninh; đề thi hình thức 100% tự luận, thời gian 120 phút (không kể thời gian giao đề), đề thi có đáp án, lời giải chi tiết và thang chấm điểm; kỳ thi được diễn ra vào ngày 22 tháng 02 năm 2023. Trích dẫn Đề học sinh giỏi huyện Toán 6 năm 2022 – 2023 phòng GD&ĐT Tiên Du – Bắc Ninh : + Tòa nhà Bitexco có 68 tầng, tầng trệt gọi là tầng G. Tòa nhà có 3 tầng hầm để xe, ba tầng hầm được đánh số lần lượt là B1, B2, B3 theo thứ tự từ trên xuống. Cô Hoa là nhân viên văn phòng tại tòa nhà. Buổi sáng cô để xe tại khu vực tầng hầm, đi thang máy lên 22 tầng đến nơi làm việc. Buổi trưa cô đi thang máy xuống 15 tầng, đến nhà hàng tại tầng 5 tòa nhà, để đến chỗ ăn liên hoan tất niên. Em hãy tính toán và cho biết cô Hoa để xe ở tầng nào và làm việc ở tầng mấy? + Hai thửa vườn hình vuông có chu vi gấp nhau ba lần và cùng trồng một thứ nông sản, mức thu hoạch trên diện tích một mét vuông cũng như nhau. Thửa lớn thu hoạch nhiều hơn thửa nhỏ 320 kg nông sản. Hỏi mỗi thửa vườn thu hoạch được bao nhiêu kilôgam nông sản? + Em hãy ghép ba tấm thẻ trong các thẻ số dưới đây để được một hình chỉ một số có ba chữ số sao cho: a) Hình đó có trục đối xứng; b) Hình đó có tâm đối xứng.

Nguồn: toanmath.com

Đọc Sách

Đề thi Olimpic Toán 6 năm 2020 - 2021 phòng GDĐT Quốc Oai - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 đề thi Olimpic Toán 6 năm 2020 – 2021 phòng GD&ĐT Quốc Oai – Hà Nội, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi Olimpic Toán 6 năm 2020 – 2021 phòng GD&ĐT Quốc Oai – Hà Nội : + Trên quãng đường AB, hai ô tô đi ngược chiều nhau và cùng khởi hành một lúc thì sau 6 giờ sẽ gặp nhau. Biết vận tốc xe đi từ A bằng 4/3 vận tốc xe đi từ B. Hỏi xe đi từ A phải khởi hành sau xe đi từ B bao lâu để hai xe gặp nhau ở chính giữa quãng đường AB? + Cho 5 đường thẳng phân biệt cùng đi qua điểm O. Chứng tỏ rằng: Trong các góc đỉnh O, có ít nhất 2 góc có số đo không lớn hơn 360. + Ta có thể dùng 48 hình vuông giống nhau để tạo thành bao nhiêu hình chữ nhật khác nhau? Ví dụ: và được coi là một hình chữ nhật.
Đề thi HSG cấp huyện Toán 6 năm 2020 - 2021 phòng GDĐT Lương Tài - Bắc Ninh
Đề thi HSG cấp huyện Toán 6 năm 2020 – 2021 phòng GD&ĐT Lương Tài – Bắc Ninh gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 120 phút, kỳ thi được diễn ra vào ngày 13 tháng 04 năm 2021.
Đề thi HSG huyện Toán 6 năm 2020 - 2021 phòng GDĐT Hà Trung - Thanh Hóa
Thứ Sáu ngày 09 tháng 04 năm 2021, phòng Giáo dục và Đào tạo huyện Hà Trung, tỉnh Thanh Hóa tổ chức kỳ thi giao lưu học sinh giỏi các môn văn hóa lớp 6 cấp huyện năm học 2020 – 2021. Đề thi HSG huyện Toán 6 năm 2020 – 2021 phòng GD&ĐT Hà Trung – Thanh Hóa gồm 01 trang với 06 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút. Trích dẫn đề thi HSG huyện Toán 6 năm 2020 – 2021 phòng GD&ĐT Hà Trung – Thanh Hóa : + Tìm số nguyên tố p sao cho p + 2, p + 10 là số nguyên tố. + Cho n a b 7 5 + 8 4. Biết a – b = 6 và n chia hết cho 9. Tìm a và b? + Trên tia Ox lấy hai điểm A, B sao cho OA = 3cm, OB = 6cm. a) Tính AB? b) Trên tia Ox lấy điểm I sao cho BI = 2 cm. Tính AI?
Đề thi HSG Toán 6 năm 2020 - 2021 trường THCS Trung Nguyên - Vĩnh Phúc
Thứ Ba ngày 30 tháng 03 năm 2021, trường THCS Trung Nguyên, huyện Yên Lạc, tỉnh Vĩnh Phúc tổ chức kỳ thi khảo sát chất lượng đội tuyển học sinh giỏi cấp huyện môn Toán lớp 6 năm học 2020 – 2021. Đề thi HSG Toán 6 năm 2020 – 2021 trường THCS Trung Nguyên – Vĩnh Phúc gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 120 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi HSG Toán 6 năm 2020 – 2021 trường THCS Trung Nguyên – Vĩnh Phúc : + Cho p là số nguyên tố lớn hơn 3. Hỏi 2016 p 2018 là số nguyên tố hay hợp số? + Tìm số tự nhiên có hai chữ số, biết rằng số đó gấp đôi tích các chữ số của nó. + Cho 100 số tự nhiên bất kì. Chứng minh rằng ta có thể chọn được ít nhất 15 số mà hiệu của hai số tùy ý chia hết cho 7.