Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tham khảo môn Toán tuyển sinh năm 2020 2021 sở GD ĐT Đồng Nai

Nội dung Đề tham khảo môn Toán tuyển sinh năm 2020 2021 sở GD ĐT Đồng Nai Bản PDF - Nội dung bài viết Đề tham khảo môn Toán tuyển sinh năm 2020 - 2021 từ Sở GD&ĐT Đồng Nai Đề tham khảo môn Toán tuyển sinh năm 2020 - 2021 từ Sở GD&ĐT Đồng Nai Vào Thứ Hai, ngày 08 tháng 06 năm 2020, Sở Giáo dục và Đào tạo tỉnh Đồng Nai đã công bố đề tham khảo môn Toán tuyển sinh lớp 10 THPT cho năm học 2020 - 2021. Đề này nhằm giúp học sinh lớp 9 tham khảo và chuẩn bị cho kỳ thi sắp tới. Đề tham khảo môn Toán tuyển sinh lớp 10 năm 2020 - 2021 từ Sở GD&ĐT Đồng Nai bao gồm 06 bài toán tự luận, thời gian làm bài 120 phút. Dưới đây là một số bài toán trích dẫn từ đề tham khảo môn Toán tuyển sinh lớp 10 năm 2020 - 2021 của Sở GD&ĐT Đồng Nai: Cho hình vuông MNPQ có MN = 4a, với 0 < a thuộc R. Tính diện tích xung quanh và thể tích của hình trụ tạo bởi hình vuông MNPQ quay quanh đường thẳng MN. Cho phương trình 2x^2 - 6x - 1 = 0 có hai nghiệm là x1 và x2. Tính P = |x1^3 - x2^3|. Lập một phương trình bậc hai một ẩn có hai nghiệm là x1 - 2*2^2 và x2 - 2*1^2. Một chuyền may có kế hoạch may 4500 áo trong một thời gian quy định. Chuyền đã may xong 4500 áo sớm hơn kế hoạch 4 ngày do mỗi ngày chuyền may nhiều hơn 400 áo so với số áo phải may trong một ngày theo kế hoạch. Hỏi số áo mỗi ngày chuyền may đã may trong thực tế? Đây là một bài thi không chỉ kiểm tra kiến thức mà còn yêu cầu học sinh có khả năng áp dụng lý thuyết vào thực hành. Hy vọng các em sẽ làm tốt trong kỳ thi sắp tới.

Nguồn: sytu.vn

Đọc Sách

Đề thi tuyển sinh lớp 10 năm học 2017 - 2018 môn Toán trường TH Cao Nguyên - Đắk Lắk
Đề thi tuyển sinh lớp 10 năm học 2017 – 2018 môn Toán trường TH Cao Nguyên – Đắk Lắk gồm 4 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho đường tròn tâm O, từ A nằm ngoài đường tròn vẽ hai tiếp tuyến AB, AC (B, C là các tiếp điểm). Gọi E là giao điểm của OA và BC. a. Chứng minh tứ giác ABOC nội tiếp. b. Chứng minh BA.BE = AE.BO. c. Gọi I là trung điểm của BE, đường thẳng qua I và vuông góc với OI cắt tia AB và AC theo thứ tự tại D và F. Chứng minh góc IDO và góc BCO bằng nhau và tam giác DOF cân. + Cho tam giác ABC có hai đường phân giác trong BD và CE. Điểm M bất kì trên đoạn DE. Gọi H, K, L lần lượt là hình chiếu của M trên BC, CA, AB. Chứng minh rằng MK + ML = MH .
Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Lạng Sơn
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Lạng Sơn gồm 4 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho nửa đường tròn tâm O, đường kính AB. Dựng tiếp tuyến Ax (Ax và nửa đường tròn cùng thuộc nửa mặt phẳng bờ AB). C là một điểm nằm trên nửa đường tròn (C không trùng A và B), dựng tiếp tuyến Cy của nửa đường tròn (O) cắt Ax tại D. Kẻ CH vuông góc với AB (H thuộc AB), BD cắt (O) tại điểm thứ hai là K và cắt CH tại M. Gọi J là giao điểm của OD và AC. a) Chứng minh rằng tứ giác AKMH nội tiếp được một đường tròn. b) Chứng minh rằng tứ giác CKJM nội tiếp được một đường tròn (O1). c) Chứng minh DJ là tiếp tuyến của đường tròn (O1).
Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Long An
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Long An gồm 4 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho hai hàm số : y = -x2 và y = 2x – 5. Vẽ đồ thị hai hàm số đã cho trên cùng mặt phẳng tọa độ Oxy. + Viết phương trình đường thẳng (d): y = ax + b, biết (d) đi qua hai điểm A(-1; 10); B(3; -2). + Cho đường tròn (O) đường kính AC. Trên bán kính OC lấy điểm B tùy ý (B không trùng O và C). Gọi M là trung điểm của đoạn thẳng AB. Qua M kẻ dây cung DE vuông góc với AB. Kẻ BI vuông góc với CD (I thuộc CD). [ads] a) Cho AM = 4cm; MC = 9cm. Tình độ dài đoạn thẳng MD và tanA của tam giác MDA. b) Chứng minh : BMDI là tứ giác nội tiếp. c) Chứng minh ADBE là hình thoi và ba điểm I; B; E thẳng hàng. d) Gọi O’ là tâm đường tròn đường kính BC. Chứng minh: MI là tiếp tuyến của (O’).
Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Thanh Hóa
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Thanh Hóa gồm 4 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho phương trình: nx^2 + x – 2 = 0 (1), với n là tham số. a) Giải phương trình (1) khi n = 0. b) Giải phương trình (1) khi n = 1. [ads] + Cho nửa đường tròn (O) đường kính MN = 2R. Gọi (d) là tiếp tuyến của (O) tại N. Trên cung MN lấy điểm E tùy ý (E không trùng với M và N), tia ME cắt (d) tại điểm F. Gọi P là trung điểm của ME, tia PO cắt (d) tại điểm Q. 1. Chứng minh ONFP là tứ giác nội tiếp. 2. Chứng minh: OF vuông góc với MQ và PM.PF = PO.PQ. 3. Xác định vị trí điểm E trên cung MN để tổng MF + 2ME đạt giá trị nhỏ nhất.