Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào lớp 10 năm 2021 - 2022 trường THCS Nguyễn Thị Thập - TP HCM

Đề thi thử Toán vào lớp 10 năm 2021 – 2022 trường THCS Nguyễn Thị Thập, quận 7, thành phố Hồ Chí Minh gồm 02 trang với 08 bài toán dạng tự luận, thời gian làm bài 120 phút (không kể thời gian phát đề). Trích dẫn đề thi thử Toán vào lớp 10 năm 2021 – 2022 trường THCS Nguyễn Thị Thập – TP HCM : + Các ống hút nhựa thường khó phân hủy và gây hại cho môi trường. Mỗi ngày có 60 triệu ống hút thải ra môi trường gây hậu quả nghiêm trọng. Ngày nay người ta chủ động sản xuất các loại ống hút dễ phân hủy. Tại tỉnh Đồng Tháp có cơ sở chuyên sản xuất ống hút “thân thiện với môi trường” xuất khẩu ra thị trường thế giới và được nhiều nước ưa chuộng. Ống hút được làm từ bột gạo, các màu chiết xuất từ củ dền, lá dứa, bông sen, bông điên điển … Một ống hút hình trụ, đường kính 12mm, bề dày ống 2mm, chiều dài ống 180mm. Em hãy tính xem để sản xuất mỗi ống thì thể tích bột gạo được sử dụng là bao nhiêu (Biết pi ≈ 3,14). + Bình và mẹ dự định đi du lịch Huế và Hội An trong 6 ngày. Biết rằng chi phí trung bình mỗi ngày tại Bà Nà là 3 000 000 đồng, còn tại Huế là 3 500 000 đồng. Tìm số ngày nghỉ tại mỗi địa điểm, biết số tiền mà họ phải chi cho toàn bộ chuyến đi là 20 000 000 đồng. + Một buổi sinh hoạt ngoại khóa có 40 học sinh tham dự, trong đó nam nhiều hơn nữ. Trong giờ giải lao, mỗi bạn nam mua một ly nước giá 5000 đồng/ly, mỗi bạn nữ mua một bánh ngọt giá 8000 đồng/cái . Các bạn đưa 260 000 đồng và được căn – tin thối lại 3 000 đồng. Hỏi lớp có bao nhiêu học sinh nam và bao nhiêu học sinh nữ?

Nguồn: toanmath.com

Đọc Sách

Đề thi thử Toán 9 tháng 2 năm 2022 trường THCS Dịch Vọng - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử Toán 9 tháng 2 năm 2022 trường THCS Dịch Vọng – Hà Nội; kỳ thi được diễn ra vào ngày 17 tháng 02 năm 2022, nhằm giúp học sinh khối lớp 9 rèn luyện để chuẩn bị cho kì thi tuyển sinh vào lớp 10 môn Toán năm học 2022 – 2023. Trích dẫn đề thi thử Toán 9 tháng 2 năm 2022 trường THCS Dịch Vọng – Hà Nội : + Cho đường tròn (O), S là điểm nằm bên ngoài đường tròn. Kẻ tiếp tuyến SA và cát tuyến SBC (B nằm giữa S và C) của đường tròn (O). Gọi I là trung điểm của BC. 1) Chứng minh bốn điểm S, A, O, I cùng thuộc một đường tròn. 2) Qua A kẻ đường thẳng vuông góc với SO tại H. Chứng minh 2 SA SH SO 3) Đường thẳng AH cắt BC tại K, cắt (O) tại D, chứng minh SD là tiếp tuyến của (O). 4) Qua I kẻ đường kính PQ (A và P nằm cùng phía đối với đường thẳng SO). Gọi M là giao điểm của SP với đường tròn (O). Chứng minh 2 SA SK SI và ba điểm M, K, Q thẳng hàng. + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Hai vòi nước củng chảy vào 1 bể cạn thì sau 2 giờ đầy bể. Nếu mở vòi I trong 45 phút rồi khóa lại và mở vòi II trong 30 phút thì cả hai vòi chảy được 1 3 bể. Hỏi mỗi vòi chảy riêng đầy bể trong bao lâu? + Cho đường thẳng (d): y m 2 x 2m 1 m là tham số 1) Vẽ đường thẳng (d) khi m 1 2) Gọi A, B lần lượt là giao điểm của đường thẳng (d) với hai trục tọa độ Ox, Oy. Tìm m để OA 3OB?
Đề thi thử Toán vào lớp 10 lần 1 năm 2022 - 2023 trường Lương Thế Vinh - Hà Nội
Ngày … tháng 01 năm 2022, trường THCS & THPT Lương Thế Vinh, thành phố Hà Nội tổ chức kỳ thi thử tuyển sinh vào lớp 10 môn Toán năm học 2022 – 2023 lần thứ nhất. Đề thi thử Toán vào lớp 10 lần 1 năm 2022 – 2023 trường Lương Thế Vinh – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút (không kể thời gian giao đề).
Đề thi vào 10 môn Toán (chuyên Toán) năm 2021 - 2022 trường chuyên Lam Sơn - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi vào 10 môn Toán (chuyên Toán) năm 2021 – 2022 trường chuyên Lam Sơn – Thanh Hóa; đề thi có đáp án và lời giải chi tiết; kỳ thi được diễn ra vào ngày 05 tháng 06 năm 2021. Trích dẫn đề thi vào 10 môn Toán (chuyên Toán) năm 2021 – 2022 trường chuyên Lam Sơn – Thanh Hóa : + Cho bảng kẻ ô vuông kích thước 8 8 gồm có 64 ô vuông con (như hình vẽ bên). Người ta đặt 33 quân cờ vào các ô vuông con của bảng sao cho mỗi ô vuông con có không quá một quân cờ. Hai quân cờ được gọi là “chiếu nhau” nếu chúng nằm cùng một hàng hoặc nằm cùng một cột. Chứng minh rằng với mỗi cách đặt luôn tồn tại ít nhất 5 quân cờ đôi một không chiếu nhau. + Cho hai đường tròn O và O cắt nhau tại hai điểm A và B. Tiếp tuyến tại A của đường tròn tâm O cắt đường tròn tâm O tại P P A. Tiếp tuyến tại A của đường tròn tâm O cắt đường tròn tâm O tại Q Q A. Gọi I là điểm sao cho tứ giác AOIO là hình bình hành và D đối xứng với A qua B. a) Chứng minh rằng I là tâm đường tròn ngoại tiếp tam giác A P Q. Từ đó suy ra tứ giác A D P Q nội tiếp. b) Gọi M là trung điểm của đoạn PQ. Chứng minh ADP QDM. c) Giả sử hai đường thẳng IB và PQ cắt nhau tại S. Gọi K là giao điểm của ADvà PQ. Chứng minh: 2 1 1 SK SP SQ. + Cho các số hữu tỉ a b c đôi một phân biệt. Đặt 2 2 2 1 1 1 B a b b c c a. Chứng minh rằng B là số hữu tỉ.
Đề thi vào 10 môn Toán (chuyên) năm 2021 - 2022 trường chuyên Lê Hồng Phong - Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi vào 10 môn Toán (chuyên) năm 2021 – 2022 trường chuyên Lê Hồng Phong – Nam Định; đề thi có đáp án, lời giải chi tiết, hướng dẫn chấm và biểu điểm (bảng chính thức do sở Giáo dục và Đào tạo tỉnh Nam Định công bố). Trích dẫn đề thi vào 10 môn Toán (chuyên) năm 2021 – 2022 trường chuyên Lê Hồng Phong – Nam Định : + Cho tam giác nhọn ABC (AB AC) nội tiếp đường tròn (O). Đường phân giác trong của BAC cắt đường tròn (O) tại D D A. Trên cung nhỏ AC của đường tròn (O) lấy điểm G khác C sao cho AG GC; một đường tròn có tâm là K đi qua A, G và cắt đoạn thẳng AD tại điểm P nằm bên trong tam giác ABC. Đường thẳng GK cắt đường tròn (O) tại điểm M M G. a) Chứng minh các tam giác KPG ODG đồng dạng với nhau. b) Chứng minh GP MD là hai đường thẳng vuông góc. c) Gọi F là giao điểm của hai đường thẳng OD và KP, đường thẳng qua A và song song với BC cắt đường tròn (K) tại điểm E E A. Chứng minh rằng tứ giác DGFP là tứ giác nội tiếp và 0 EGF 90. + Xét hai tập hợp A B khác ∅ thỏa mãn A B và A B. Biết rằng A có vô hạn phần tử và tổng của mỗi phần tử thuộc A với mỗi phần tử thuộc B là phần tử thuộc B. Gọi x là phần tử bé nhất thuộc B thỏa mãn x ≠ 1. Hãy tìm x. + Cho 1 2 12 pp p … là các số nguyên tố lớn hơn 3. Chứng minh rằng 22 2 1 2 12 pp p chia hết cho 12.