Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát lớp 9 môn Toán năm 2022 2023 trường THCS Lê Quý Đôn Hà Nội

Nội dung Đề khảo sát lớp 9 môn Toán năm 2022 2023 trường THCS Lê Quý Đôn Hà Nội Bản PDF - Nội dung bài viết Đề khảo sát môn Toán lớp 9 năm 2022 – 2023 trường THCS Lê Quý Đôn Hà Nội Đề khảo sát môn Toán lớp 9 năm 2022 – 2023 trường THCS Lê Quý Đôn Hà Nội Xin chào quý thầy, cô giáo và các em học sinh lớp 9! Trong năm học 2022 – 2023, trường THCS Lê Quý Đôn đã tổ chức đề khảo sát chất lượng môn Toán cho các em học sinh lớp 9. Đề thi bao gồm các câu hỏi mức độ khó từ dễ đến khó, kèm theo đáp án và lời giải chi tiết để giúp các em ôn tập và nắm vững kiến thức. Trích dẫn một số câu hỏi trong đề khảo sát: 1. Cho parabol (P): y = ax^2. Hãy tìm hệ số a biết (P) đi qua điểm (-1;1). Với giá trị tìm được, hãy tính tọa độ các giao điểm A, B của (P) và đường thẳng (d): y = −2x + 3 và tính diện tích tam giác OAB. 2. Giải bài toán về tổ công nhân: Hai tổ công nhân cần sản xuất 320 sản phẩm. Tổ I sản xuất vượt 15% kế hoạch, tổ II làm giảm 10% so với kế hoạch, tổng cộng hai tổ làm được 333 sản phẩm. Hãy tính số sản phẩm mỗi tổ cần làm theo kế hoạch. 3. Về một vấn đề hình học: Một điểm M nằm ngoài đường tròn (O; R). Từ M kẻ hai tiếp tuyến MA, MB đến đường tròn, qua A kẻ đường thẳng song song với MB cắt đường tròn tại điểm C; MC cắt đường tròn tại D (D khác C). Hãy chứng minh một số tính chất và xác định vị trí của điểm M để diện tích tam giác MPQ nhỏ nhất. Đề khảo sát Toán lớp 9 năm 2022 – 2023 trường THCS Lê Quý Đôn Hà Nội đã được thi vào ngày 25 tháng 02 năm 2023. Mọi thông tin chi tiết và đáp án sẽ được cung cấp sau kỳ thi. Chúc các em học sinh ôn tập tốt và đạt kết quả cao trong bài kiểm tra sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề kiểm tra kiến thức Toán 9 đợt 1 năm 2021 trường chuyên KHTN - Hà Nội (Vòng 2)
Đề kiểm tra kiến thức Toán 9 đợt 1 năm 2021 trường chuyên KHTN – Hà Nội (Vòng 2) gồm 01 trang với 04 bài toán dạng tự luận, thời gian làm bài 150 phút; kỳ thi được diễn ra vào ngày 28 tháng 03 năm 2021.
Đề khảo sát Toán 9 năm 2020 - 2021 trường Hoàng Hoa Thám - Hà Nội
Đề khảo sát chất lượng Toán 9 năm học 2020 – 2021 trường THCS Hoàng Hoa Thám – Hà Nội gồm 01 trang với 05 bài toán tự luận, thời gian học sinh làm bài thi là 90 phút.
Đề khảo sát Toán 9 lần 3 năm 2020 - 2021 trường THCS Tam Hồng - Vĩnh Phúc
Đề khảo sát Toán 9 lần 3 năm 2020 – 2021 trường THCS Tam Hồng – Vĩnh Phúc gồm 04 câu trắc nghiệm và 05 câu tự luận, thời gian học sinh làm bài thi là 120 phút, đề thi có đáp án + lời giải chi tiết + hướng dẫn chấm điểm. Trích dẫn đề khảo sát Toán 9 lần 3 năm 2020 – 2021 trường THCS Tam Hồng – Vĩnh Phúc : + Cho đường tròn (O, 3cm) và đường tròn (O’, 4cm). Biết độ dài đoạn nối tâm OO’ = 6cm. Khẳng định nào sau đây đúng? A. Hai đường tròn (O) và (O’) tiếp xúc nhau. B. Hai đường tròn (O) và (O’) cắt nhau. C. Hai đường tròn (O) và (O’) ở ngoài nhau. D. Đường tròn (O’) đựng đường tròn (O). + Cho hai đường tròn (O), (O’) tiếp xúc ngoài tại A. Gọi AB là đường kính của đường tròn (O), AC là đường kính của đường tròn (O’), DE là tiếp tuyến chung của hai đường tròn. K là giao điểm của BD và CE. a) Tính số đo DAE. b) Tứ giác ADKE là hình gì? Vì sao? c) Chứng minh AK là tiếp tuyến chung của 2 đường tròn (O) và (O’). d) Gọi M là trung điểm của BC. Chứng minh MK DE. + Cho hàm số bậc nhất: y = (m – 1)x + 1 (m là tham số). a) Tìm m để hàm số nghịch biến trên R. b) Vẽ đồ thị hàm số khi m = -1. c) Tìm m để đồ thị của hàm số đã cho cắt đường thẳng y = x -3 tại điểm có hoành độ bằng -2.
Đề khảo sát Toán 9 lần 2 năm 2020 - 2021 trường THCS Thanh Xuân - Hà Nội
Đề khảo sát Toán 9 lần 2 năm 2020 – 2021 trường THCS Thanh Xuân – Hà Nội gồm 01 trang với 06 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút. Trích dẫn đề khảo sát Toán 9 lần 2 năm 2020 – 2021 trường THCS Thanh Xuân – Hà Nội : + Một máy bay cất cánh theo phương có góc nghiêng là 23°. Hỏi muốn đạt độ cao là 2500m, máy bay phải bay một đoạn đường là bao nhiêu mét? (làm tròn đến mét). + Cho tam giác đều ABC nội tiếp đường tròn tâm O. Trên cạnh BC lấy điểm N, gọi E và F theo thứ tự là hình chiếu của N lên AB, AC. Gọi D là trung điểm của ВC. a) Chứng minh rằng bốn điểm A, E, N, F cùng thuộc một đường tròn. Xác định tâm I của đường tròn đó. b) Chứng minh rằng BN.BD = BE.BA. c) Chứng minh rằng ED = FD. d) Gọi H là giao điểm của hai đường chéo của tứ giác EIFD. Chứng minh O, H, N thẳng hàng. + Cho xy + yz + zx = 1. Tìm giá trị nhỏ nhất của P = 3(x2 + y2) + z2.