Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các bài toán vận dụng cao dãy số - Nguyễn Minh Tuấn, Nguyễn Nhật Linh

giới thiệu đến bạn đọc chuyên đề CÁC BÀI TOÁN VẬN DỤNG CAO DÃY SỐ do các tác giả Nguyễn Minh Tuấn và Nguyễn Nhật Linh (thành viên trong nhóm Chinh Phục Olympic Toán) sưu tầm và biên soạn. Tài liệu gồm 85 trang được biên soạn với mục đích chào xuân năm mới Tết n cũng như là món quà cám ơn đối với các bạn đã theo dõi và ủng hộ nhóm tác giả trong thời gian vừa qua. Như các bạn đã biết, trước kia thì chủ đề dãy số (thuộc chương trình Đại số và Giải tích 11) không phải là một phần quan trọng trong kì thi Trung học Phổ thông Quốc Gia môn Toán, nhưng trong những năm gần đây vấn đề này đã được các trường kết nối với các mảng kiến thức khác như hàm số, mũ và logarit, nguyên hàm và tích phân … yêu cầu chúng ta cần phải tìm hiểu kỹ, sâu và rộng thì mới có thể giải quyết được chúng, điều đó gây ra không ít những bỡ ngỡ, những sự lúng túng cho các bạn lần đầu gặp những bài như thế. Vì vậy trong chủ đề này, nhóm tác giả và bạn đọc sẽ cùng tìm hiểu các bài toán liên quan tới chúng, hy vọng phần nào sẽ giúp bạn đọc có kinh nghiệm và hướng giải quyết khi gặp các bài toán dạng này. Tài liệu tuyển tập hơn 100 bài toán vận dụng cao dãy số có đáp án và lời giải chi tiết với nhiều dạng toán khác nhau chắc hẳn sẽ mang tới cho bạn đọc một cái nhìn khác và mới lạ hơn về chủ đề dãy số. Hy vọng thông qua ebook này, bạn đọc sẽ học thêm được nhiều điều và rút ra được kinh nghiệm cho bản thân trong việc giải quyết các dạng toán vận dụng cao dãy số mà nhóm tác giả đưa ra và nhiều dạng toán có liên quan khác. [ads] Trích dẫn một số bài toán trong tài liệu các bài toán vận dụng cao dãy số – Nguyễn Minh Tuấn, Nguyễn Nhật Linh: + Cho dãy số (un) có số hạng đầu tiên u1 ≠ 1 thỏa mãn đẳng thức sau: (log_2 5u1)^2 + (log_2 7u1)^2 = (log_2 5)^2 + (log_2 7)^2 và un+1 = 7un với mọi n ≥ 1. Giá trị nhỏ nhất của n để un ≥ 1111111 bằng? A. 11. B. 8. C. 9. D. 10. + Tam giác mà ba đỉnh của nó là ba trung điểm ba cạnh của tam giác ABC được gọi là tam giác trung bình của tam giác ABC.Ta xây dựng dãy các tam giác A1B1C1, A2B2C2, A3B3C3 … sao cho A1B1C1 là một tam giác đều cạnh bằng 3 và với mỗi số nguyên dương n ≥ 2, tam giác AnBnCn là tam giác trung bình của tam giác An-1Bn-1Cn-1. Với mỗi số nguyên dương n, kí hiệu Sn tương ứng là diện tích hình tròn ngoại tiếp tam giác AnBnCn. Tính tổng S = S1 + S2 + … + Sn + …? + Gọi q là công bội của một cấp số nhân, biết tổng ba số hạng đầu bằng 16 4/9, đồng thời theo thứ tự,  chúng là số hạng thứ nhất, thứ tư và thứ tám của một cấp số cộng. Hỏi q thuộc khoảng nào sau đây?

Nguồn: toanmath.com

Đọc Sách

Hướng dẫn giải các dạng toán dãy số, cấp số cộng và cấp số nhân - Đặng Việt Đông
Tài liệu gồm 90 phân dạng và hướng dẫn giải các dạng toán về chuyên đề dãy số, cấp số cộng và cấp số nhân, phục vụ cho kỳ thi THPT Quốc gia 2017 – 2018. Tất cả các bài toán đều có đáp án và lời giải chi tiết. Phần 1. Dãy số A – Lý thuyết B – Bài tập Dạng 1 . Số hạng của dãy số Dạng 2 . Dãy số đơn điệu, dãy số bị chặn Phần 2. Cấp số cộng A – Lý thuyết B – Bài tập Dạng 1 . Xác định cấp số cộng và các yếu tố của cấp số cộng Phương pháp : + Dãy số (un) là một cấp số cộng ⇔ un+1 – un = d không phụ thuộc vào n và d là công sai + Để xác định một cấp số cộng, ta cần xác định số hạng đầu và công sai. Do đó, ta thường biểu diễn giả thiết của bài toán qua u1 và d Dạng 2 . Tìm điều kiện để dãy số lập thành cấp số cộng: Ba số a, b, c theo thứ tự đó lập thành cấp số cộng ⇔ a + c = 2b [ads] Phần 3. Cấp số nhân A – Lý thuyết B – Bài tập Dạng 1 . Xác định cấp số nhân và các yếu tố của cấp số nhân Phương pháp : + Dãy số (un) là một cấp số nhân ⇔ un+1/un = q không phụ thuộc vào n và q là công bội + Để xác định một cấp số nhân, ta cần xác định số hạng đầu và công bội. Do đó, ta thường biểu diễn giả thiết của bài toán qua u1 và q Dạng 2 . Tìm điều kiện để dãy số lập thành cấp số nhân: Ba số a, b, c theo thứ tự đó lập thành cấp số nhân ⇔ ac = b^2
Dãy số và giới hạn của dãy số - Nguyễn Tất Thu
Tài liệu gồm 69 trang, hướng dẫn giải các bài toán thuộc chuyên đề dãy số và giới hạn của dãy số ở mức độ khó. Nội dung tài liệu gồm các phần: + Chương 1. DÃY SỐ 1.1 Dãy số 1.1.1 Định nghĩa dãy số 1.1.2 Cách cho dãy số 1.1.3 Dãy số tăng, giảm và dãy số bị chặn 1.2 Cấp số cộng – Cấp số nhân 1.2.1 Cấp số cộng 1.2.1.1 Định nghĩa 1.2.1.2 Tính chất 1.2.2 Cấp số nhân 1.2.2.1 Định nghĩa 1.2.2.2 Tính chất 1.2.3 Ứng dụng CSC – CSN để tìm CTTQ của dãy số [ads] + Chương 2. GIỚI HẠN DÃY SỐ 2.1 Định nghĩa 2.2 Các định lí về giới hạn 2.3 Một số phương pháp tìm giới hạn dãy số 2.3.1 Xác định công thức tổng quát của dãy số 2.3.2 Sử dụng nguyên lí Weierstrass 2.3.3 Sử dụng nguyên lí kẹp 2.3.4 Xây dựng dãy phụ 2.3.5 Giới hạn của dãy un = f(un) 2.3.6 Giới hạn của một tổng 2.4 Dãy số sinh bởi phương trình
Tìm số hạng tổng quát của dãy số bằng phương pháp sai phân - Mai Xuân Việt
Tài liệu gồm 21 trang hướng dẫn tìm số hạng tổng quát của dãy số bằng phương pháp sai phân, tài liệu do tác giải Mai Xuân Việt biên soạn, nội dung gồm 6 phần: I – Phương trình sai phân bậc nhất II – Phương trình sai phân bậc hai III – Phương trình sai phân bậc ba IV – Phương trình sai phân bậc cao V – Một số dạng đặc biệt khác thường gặp của dãy số trong các kì thi VI – Sử dụng lượng giác để tìm công thức tổng quát của dãy số [ads]
Hướng dẫn giải toán chuyên đề dãy số - Nguyễn Minh Hải
Tài liệu gồm 23 trang hướng dẫn giải toán chuyên đề dãy số, tài liệu được biên soạn bởi thầy Nguyễn Minh Hải. Phần 1. Một số vấn đề về lý thuyết I – Phương pháp quy nạp toán học II – Một số vấn đề về dãy số Dãy số tăng, giảm (đơn điệu) Dãy số bị chặn Giới hạn dãy số Cấp số công và cấp số nhân III – Một số dạng toán về dãy số thường gặp Chứng minh dãy số tăng, giảm, bị chặn, dãy số có giới hạn Chứng minh dãy số lập thành cấp số cộng, cấp số nhân, tính chất của cấp số Tìm công thức tổng quát của dãy số Chứng minh dãy số có giới hạn và tìm giới hạn của dãy số Một số dạng toán khác về dãy số: bất đẳng thức dãy số, chứng minh tính chất chia hết, chứng minh dãy số nguyên … [ads] Phần 2. Áp dụng giải toán I – Chứng minh dãy số tăng, giảm và bị chặn II – Công thức tổng quát của dãy số III – Tìm giới hạn của dãy số Nếu dãy số cho bởi công thức tổng quát thi ta thường sử dụng các phương pháp tính giới hạn của dãy số để tính. Trong nhiều trường hợp ta phải biến đổi công thức tổng quát đó về dạng đơn giản hơn trước khi tính giới hạn. Một số phương pháp tính giới hạn của dãy số: + Nhân liên hợp đối với giới hạn dạng ∞ – ∞ + Chia cả tử và mẫu cho lũy thừa bậc cao nhất của n đối với giới hạn dạng ∞/∞ + Kết hợp cả hai phương pháp đã nêu ở trên + Sử dụng định lý giới hạn kẹp + Sử dụng điều kiện đủ để dãy số có giới hạn, thiết lập biểu thức về giới hạn. Kết quả giới hạn là nghiệm của phương trình nào đó IV – Một số dạng toán khác Phần 3. bài tập tổng hợp