Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chinh phục nguyên hàm - tích phân từ A đến Z - Nguyễn Hữu Bắc

Sách gồm 480 trang trình bày chi tiết hầu hết những dạng toán nguyên hàm – tích phân thường gặp trong chương trình Toán 12. Nội dung sách : Chương mở đầu + Mối liên hệ giữa nguyên hàm và tích phân + Ý nghĩa A. Lý thuyết Chương I. Nguyên hàm I. Khái niệm nguyên hàm II. Tính chất nguyên hàm Chương II. Tích phân I. Khái niệm về tích phân II. Tính chất của tích phân III. Các phương pháp tính nguyên hàm – tích phân thường gặp Chương III. Bảng nguyên hàm các hàm số cơ bản Chương IV. Cách tạo dạng tích phân B. Phương pháp tìm nguyên hàm – tích phân Chương I. Phương pháp vi phân Chương II. Phương pháp bảng nguyên hàm Chương III. Phương pháp đổi biến số I. Phương pháp II. Đổi biến số hàm vô tỷ III. Đổi biến hàm đa thức bậc cao IV. Đổi biến hàm lượng giác V. Hàm dưới dấu tích phân chứa các biểu thức bậc nhất của sinx, cosx VI. Đổi biến dựa vào cận Chương IV. Phương pháp tích phân từng phần I. Kỹ thuật chọn hệ số C II. Kỹ thuật tính nhanh III. Phân dạng – phương pháp [ads] C. Nguyên hàm – Tích phân các loại hàm số Chương I. Nguyên hàm – tích phân các hàm đa thức I. Hàm số tìm nguyên hàm II. Phương pháp III. Bài tập vận dụng Chương II. Tích phân hàm hữu tỉ I. Hàm số tìm nguyên hàm II. Phương pháp III. Kỹ thuật nhẩm hệ số trong đồng nhất thức IV. Nguyên tắc giải V. Bài tập áp dụng Chương III. Tích phân hàm vô tỉ Chương IV. Tích phân hàm lượng giác I. Hàm số tìm nguyên hàm II. Phương pháp III. Các công thức lượng giác thường sử dụng IV. Các dạng nguyên hàm lượng giác thường gặp Chương V. Tích phân hàm số mũ – logarit Chương VI. Tích phân hàm trị tuyệt đối Chương VII. Tích phân liên kết Chương VIII. Tích phân trong đề thi đại học từ 2002 đến 2015 Chương IX. Tích phân trong các đề thi thử đại học Chương X. Những bài toán tích phân khó D. Ứng dụng tích phân Chương I. Ứng dụng tích phân để tính diện tích I. Diện tích hình phẳng giới hạn bởi các đường cong II. Diện tích hình tròn III. Diện tích hình Elip Chương II. Ứng dụng tích phân để tính thể tích I. Thể tích V sinh bởi diện tích S (tạo bởi một đường cong với trục) II. Thể tích V sinh bởi diện tích S (tạo bởi từ hai đường cong) Chương III. Sai lầm khi tính tích phân

Nguồn: toanmath.com

Đọc Sách

Chuyên đề chọn lọc nguyên hàm, tích phân và ứng dụng - Nguyễn Ngọc Dũng
Tài liệu gồm 88 trang, được biên soạn bởi thầy giáo Nguyễn Ngọc Dũng (trường THPT Tạ Quang Bửu, thành phố Hồ Chí Minh), trình bày các khái niệm, tính chất và các dạng bài tập chuyên đề nguyên hàm, tích phân và ứng dụng, giúp học sinh lớp 12 tham khảo khi học chương trình môn Toán 12 phần Giải tích chương 3. MỤC LỤC : CHƯƠNG 3 NGUYÊN HÀM, TÍCH PHÂN VÀ ỨNG DỤNG 3. Bài 1 Nguyên hàm 3. A Các khái niệm 3. B Tính chất 3. C Các dạng bài tập 3. + Dạng 1. Sử dụng bảng nguyên hàm 3. + Dạng 2. Nguyên hàm hàm phân thức 8. Bài 2 Tích phân 11. A Các khái niệm 11. B Tính chất 11. C Các dạng bài tập 11. + Dạng 1. Biến đổi và sử dụng bảng nguyên hàm 11. Bài 3 Phương pháp đổi biến 17. + Dạng 1. Nguyên hàm đổi biến loại 1 17. + Dạng 2. Nguyên hàm đổi biến loại 2 21. + Dạng 3. Tích phân đổi biến 24. Bài 4 Nguyên hàm, tích phân bằng phương pháp từng phân 33. + Dạng 1. Nguyên hàm từng phần 33. + Dạng 2. Tích phân từng phần 42. Bài 5 Ứng dụng của tích phân 48. + Dạng 1. Tính diện tích hình phẳng 48. + Dạng 2. Tính thể tích vật thể 56. Bài 6 Các dạng toán nâng cao 57. + Dạng 1. Các bài toán lý thuyết 57. + Dạng 2. Tích phân hàm ẩn 62. + Dạng 3. Tích phân hàm số cho bởi nhiều biểu thức 71. + Dạng 4. Ứng dụng tích phân giải các bài toán khảo sát hàm số 77.
Nắm trọn chuyên đề nguyên hàm, tích phân và ứng dụng ôn thi THPT QG môn Toán
Tài liệu gồm 409 trang, được biên soạn bởi thầy giáo Phan Nhật Linh, tổng hợp các dạng bài tập thường gặp về chuyên đề nguyên hàm, tích phân và ứng dụng, có đáp án và lời giải chi tiết, giúp học sinh lớp 12 ôn tập hướng đến kỳ thi tốt nghiệp THPT Quốc gia môn Toán năm học 2023 – 2024. CHỦ ĐỀ 1 . NGUYÊN HÀM CỦA HÀM SỐ CƠ BẢN. Dạng 1: Nguyên hàm của hàm số cơ bản. Dạng 2: Nguyên hàm của hàm số phân thức hữu tỷ. Dạng 3: Tìm nguyên hàm thỏa mãn điều kiện cho trước. Dạng 4: Tìm nguyên hàm bằng phương pháp đổi biến số. Dạng 5: Tìm nguyên hàm bằng phương pháp nguyên hàm từng phần. Dạng 6: Nguyên hàm hàm ẩn. CHỦ ĐỀ 2 . TÍCH PHÂN CỦA HÀM SỐ CƠ BẢN. Dạng 7: Tích phân của hàm số cơ bản. Dạng 8: Tính tích phân bằng phương pháp đổi biến. Dạng 9: Tính tích phân bằng phương pháp tích phân từng phần. Dạng 10: Tích phân hàm ẩn và tích phân đặc biệt. Dạng 11: Tính tích phân bằng phương pháp vi phân. Dạng 12: Ứng dụng của tích phân tính diện tích hình phẳng. Dạng 13: Ứng dụng tích phân vào bài toán chuyển động.
Tài liệu chuyên đề ứng dụng của tích phân trong hình học
Tài liệu gồm 222 trang, tổng hợp lý thuyết, các dạng toán và bài tập tự luận + trắc nghiệm chuyên đề ứng dụng của tích phân trong hình học, từ cơ bản đến nâng cao, có đáp án và lời giải chi tiết, giúp học sinh lớp 12 tham khảo khi học chương trình môn Toán 12. BÀI 3 . ỨNG DỤNG CỦA TÍCH PHÂN TRONG HÌNH HỌC. I. LÝ THUYẾT. II. HỆ THỐNG BÀI TẬP TỰ LUẬN. DIỆN TÍCH HÌNH PHẲNG: + Dạng 1. Ứng dụng tích phân tính diện tích hình phẳng giới hạn bởi y = f(x), trục Ox, x = a và x = b. + Dạng 2. Ứng dụng tích phân tính diện tích hình phẳng giới hạn bởi y = f(x), y = g(x), x = a và x = b. + Dạng 3. Ứng dụng tích phân tính diện tích hình phẳng giới hạn bởi y = f(x) và y = g(x). THỂ TÍCH VẬT THỂ TRÒN XOAY: + Dạng 1. Thể tích khối tròn xoay được sinh ra khi quay hình phẳng giới hạn bởi các đường y = f(x), trục hoành và hai đường thẳng x = a, x = b quanh trục Ox. + Dạng 2. Thể tích khối tròn xoay sinh bởi hình phẳng giới hạn bởi các đường y = f(x), y = g(x), x = a và x = b khi quay quanh trục Ox. III. HỆ THỐNG BÀI TẬP TRẮC NGHIỆM. 1. Bài tập trắc nghiệm trích từ đề tham khảo và đề chính thức của Bộ Giáo dục và Đào tạo từ năm 2017 đến nay. 2. Hệ thống bài tập trắc nghiệm. + Dạng 1. Ứng dụng tích phân để tính diện tích. + Dạng 2. Ứng dụng tích phân để tính thể tích. 3. Hệ thống bài tập trắc nghiệm mức độ vận dụng – vận dụng cao (VD – VDC).
Tài liệu chuyên đề tích phân và một số phương pháp tính tích phân
Tài liệu gồm 159 trang, tổng hợp lý thuyết, các dạng toán và bài tập tự luận + trắc nghiệm chuyên đề tích phân và một số phương pháp tính tích phân, từ cơ bản đến nâng cao, có đáp án và lời giải chi tiết, giúp học sinh lớp 12 tham khảo khi học chương trình môn Toán 12. BÀI 2 . TÍCH PHÂN. I. LÝ THUYẾT. II. HỆ THỐNG BÀI TẬP TỰ LUẬN. + Dạng 1. Sử dụng định nghĩa tích phân. + Dạng 2. Sử dụng tính chất tích phân. + Dạng 3. Sử dụng tính chất chèn cận để tính tích phân. + Dạng 4. Sử dụng định nghĩa tích phân vào các bài toán khác. + Dạng 5. Phương pháp đổi biến số loại 1 để tính tích phân. + Dạng 6. Phương pháp đổi biến số loại 2 để tính tích phân. + Dạng 7. Phương pháp từng phần để tính tích phân. + Dạng 8. Kỹ thuật tích phân từng phần hàm ẩn. + Dạng 9. Tính tích phân dựa vào tính chất. + Dạng 10. Kỹ thuật phương trình hàm. + Dạng 11. Kỹ thuật biến đổi. + Dạng 12. Kỹ thuật đạo hàm đúng. + Dạng 13. Kỹ thuật đưa về bình phương loại 1. + Dạng 14. Kỹ thuật đưa về bình phương loại 2 – kỹ thuật Holder. III. HỆ THỐNG BÀI TẬP TRẮC NGHIỆM. 1. Bài tập trắc nghiệm trích từ đề tham khảo và đề chính thức của Bộ Giáo dục và Đào tạo từ năm 2017 đến nay. 2. Hệ thống bài tập trắc nghiệm. + Tích phân hàm số hữu tỷ. + Tích phân đổi biến. + Tích phân từng phần. 3. Hệ thống bài tập trắc nghiệm mức độ vận dụng – vận dụng cao (VD – VDC). + Dạng 1. Tích phân hàm ẩn. + Dạng 2. Tích phân một số hàm đặc biệt.