Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi Toán 8 năm 2022 - 2023 phòng GDĐT Như Thanh - Thanh Hoá

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi văn hóa môn Toán 8 cấp huyện năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Như Thanh, tỉnh Thanh Hoá; kỳ thi được diễn ra vào ngày 12 tháng 01 năm 2023. Trích dẫn Đề học sinh giỏi Toán 8 năm 2022 – 2023 phòng GD&ĐT Như Thanh – Thanh Hoá : + Cho biểu thức A. Rút gọn A và tìm số nguyên x để A chia hết cho 2. Cho các số thực a, b, c đôi một khác nhau thỏa mãn: a3 + b3 + c3 = 3abc và abc khác 0. Tính giá trị của biểu thức P. + Tìm cặp số nguyên (x;y) thỏa mãn phương trình: x3 + 3x = x2y + 2y + 5. Cho x; y là các số nguyên khác 0; 1; -1 và x + y chia hết cho xy. Chứng minh rằng x3 + 1 không chia hết cho y. + Cho tứ giác ABCD. Gọi E, I lần lượt là trung điểm của AC và BC; M là điểm đối xứng với I qua E. 1. Chứng minh tứ giác ABIM là hình bình hành. 2. Gọi N, F lần lượt là trung điểm của AD và BD; K là điểm đối xứng với I qua F. Chứng minh ba đường thẳng IN; MF; KE đồng quy. 3. Gọi O là giao hai đường chéo AC và BD. Kí hiệu: S; S1; S2 lần lượt là diện tích tứ giác ABCD, tam giác AOB và tam giác COD. Biết S1 = a2; S2 = b2 với a, b là các số dương cho trước. Tìm điều kiện của tứ giác ABCD để S = (a + b)2.

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát HSG Toán 8 năm 2023 - 2024 phòng GDĐT Gia Viễn - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề khảo sát học sinh giỏi môn Toán 8 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Gia Viễn, tỉnh Ninh Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát HSG Toán 8 năm 2023 – 2024 phòng GD&ĐT Gia Viễn – Ninh Bình : + Cho hình chóp S.ABC có đáy là tam giác đều ABC cạnh bằng 3a và cạnh bên SA bằng 2a (với a > 0). Tính độ dài đường cao của hình chóp và thể của hình chóp. + Cho tam giác ABC vuông cân tại A. Trên tia đối của tia AC lấy điểm M sao cho 0 AM AC. Gọi K là hình chiếu vuông góc của M trên BC, MK cắt AB tại H. Gọi E F lần lượt là trung điểm của CH và BM, O là điểm cách đều ba điểm BCM. Chứng minh rằng: a) CH BM b) 0 EAK 45 c) AB BM AK CB. d) Các đường thẳng AK EF OH đồng quy. + Hai số phân biệt được chọn ngẫu nhiên từ tập hợp {-2; -1; 0; 3; 4; 5} và đem nhân với nhau. Hỏi xác suất để tích bằng 0 là bao nhiêu?
Đề học sinh giỏi Toán 8 năm 2023 - 2024 phòng GDĐT Đồng Phú - Bình Phước
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi môn Toán 8 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND huyện Đồng Phú, tỉnh Bình Phước. Trích dẫn Đề học sinh giỏi Toán 8 năm 2023 – 2024 phòng GD&ĐT Đồng Phú – Bình Phước : + Một bạn học sinh đi học từ nhà đến trường với vận tốc trung bình là 4km/h. Sau khi đi được 2 3 quãng đường bạn ấy đã tăng vận tốc lên 5km/h. Tính quãng đường từ nhà đến trường của bạn học sinh đó, biết rằng thời gian bạn ấy đi từ nhà đến trường là 28 phút. + Xác định hệ số a và b của hàm số y = ax + b, biết rằng đồ thị (d’) của hàm số này song song với đồ thị hàm số (d): y = -2x + 3 và đi qua điểm A(-3;2). + Cho hình vuông ABCD, trên cạnh AB lấy điểm E và trên AD lấy điểm F sao cho AE = AF. Vẽ AH vuông góc với BF (H thuộc BF), AH cắt CD và BC lần lượt tại hai điểm M và N. a) Chứng minh tứ giác AEMD là hình chữ nhật. b) Biết diện tích của tam giác BCH gấp bốn lần diện tích tam giác AEH. Chứng minh rằng: AC = 2EF c) Chứng minh rằng: 2 1 AD AM AN.
Đề KĐCL mũi nhọn Toán 8 năm 2023 - 2024 phòng GDĐT Nam Đàn - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi kiểm định chất lượng mũi nhọn môn Toán 8 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Nam Đàn, tỉnh Nghệ An. Trích dẫn Đề KĐCL mũi nhọn Toán 8 năm 2023 – 2024 phòng GD&ĐT Nam Đàn – Nghệ An : + Cho đoạn thẳng AB. Trên một nửa mặt phẳng bờ AB, kẻ tia Ax, By cùng vuông góc với AB. Gọi O là trung điểm của AB, trên Ax lấy điểm M, trên By lấy điểm N sao cho góc MON = 90°. a) Chứng minh: AB2 = 4.AM.BN. b) Kẻ OI vuông góc với MN (I thuộc MN). OI cắt Ax tại E. Chứng minh MA.OE = ME.OI. c) AI cắt OM tại P, BI cắt ON tại Q, AN cắt BM tại K. Chứng minh ba điểm P, K, Q thẳng hàng. + Cho các số nguyên từ 1 đến 10 được xếp xung quanh một đường tròn theo một thứ tự tùy ý. Chứng minh rằng với cách xếp đó luôn tồn tại ba số theo thứ tự liên tiếp có tổng lớn hơn hoặc bằng 17.
Đề học sinh giỏi Toán 8 năm 2023 - 2024 phòng GDĐT Lục Ngạn - Bắc Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi văn hóa cấp huyện môn Toán 8 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Lục Ngạn, tỉnh Bắc Giang; kỳ thi được diễn ra vào ngày 06 tháng 03 năm 2024. Trích dẫn Đề học sinh giỏi Toán 8 năm 2023 – 2024 phòng GD&ĐT Lục Ngạn – Bắc Giang : + Cho ABC vuông cân tại A có AD là đường trung tuyến. Lấy M thuộc đoạn thẳng AD. Kẻ ME vuông góc với AB tại E, MF vuông góc với AC tại F. Gọi giao điểm của DF và AB là K. Kẻ EI vuông góc với DF tại I. 1) Chứng minh rằng: KA KE KF KI.2) Chứng minh rằng: AIF AMF. 3) Chứng minh ba điểm B, M, I thẳng hàng. + Một khối bê tông có dạng và kích thước như hình bên dưới đây. Phần dưới của khối bê tông có dạng hình hộp chữ nhật, đáy là hình vuông cạnh 20cm, chiều cao 15cm. Phần trên của khối bê tông có dạng hình chóp tứ giác đều, chiều cao 80cm. Tính thể tích của khối bê tông đó. + Thống kê điểm kiểm tra cuối năm môn Toán của một nhóm 100 học sinh lớp 8 được chọn ngẫu nhiên của trường THCS X, thu được kết quả như bảng sau: Điểm 1 2 3 4 5 6 7 8 9 10 Số học sinh 7 9 11 11 12 12 13 9 8 8. Chọn ngẫu nhiên một học sinh lớp 8 của trường đó thì kết quả ước lượng của biến cố “học sinh có điểm lớn hơn 7” là?