Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tóm tắt lý thuyết và bài tập trắc nghiệm véctơ trong không gian, quan hệ vuông góc

Sau một khoảng thời gian nghỉ học kéo dài do ảnh hưởng của tình hình dịch bệnh, thì hiện tại, nhiều trường THPT trên toàn quốc đã bắt đầu cho học sinh đi học trở lại. Đây là thời điểm các em học sinh lớp 12 cần ôn tập lại kiến thức để chuẩn bị cho kỳ thi THPT Quốc gia và kỳ thi tuyển sinh vào các trường Cao đẳng – Đại học năm học 2019 – 2020. giới thiệu đến các em tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm véctơ trong không gian, quan hệ vuông góc, một chủ đề rất quan trọng trong chương trình Hình học 11 chương 3. Bên cạnh tài liệu véctơ trong không gian, quan hệ vuông góc dạng PDF dành cho học sinh, còn chia sẻ tài liệu WORD (.doc / .docx) nhằm hỗ trợ quý thầy, cô giáo trong công tác giảng dạy. [ads] Khái quát nội dung tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm véctơ trong không gian, quan hệ vuông góc: Bài 1 . VECTƠ TRONG KHÔNG GIAN. Dạng toán 1: Chứng minh đẳng thức. Phân tích vectơ. Áp dụng công thức tính tích vô hướng. + Áp dụng các phép toán đối với vectơ (phép cộng hai vectơ, phép hiệu hai vectơ, phép nhân một vectơ với một số). + Áp dụng các tính chất đặc biệt của hai vectơ cùng phương, trung điểm của đoạn thẳng, trọng tâm của tam giác. Dạng toán 2: Chứng minh hai đường thẳng song song, ba điểm thẳng hàng, đường thẳng song song với mặt phẳng, các tập hợp điểm đồng phẳng. + Ứng dụng điều kiện của hai vectơ cùng phương, ba vectơ đồng phẳng. Bài 2 . GÓC GIỮA HAI ĐƯỜNG THẲNG. Dạng toán: Xác định góc giữa hai đường thẳng, chứng minh hai đường thẳng vuông góc. Bài 3 . ĐƯỜNG THẲNG VUÔNG GÓC MẶT PHẲNG. Dạng toán: Xác định góc giữa đường thẳng và mặt phẳng. Bài 4 . GÓC GIỮA HAI MẶT PHẲNG. Dạng toán: Góc giữa hai mặt phẳng.

Nguồn: toanmath.com

Đọc Sách

Phương pháp giải toán Hình học 11 chương 3 Quan hệ vuông góc - Nguyễn Ngọc Dũng
Tài liệu gồm 86 trang trình bày phương pháp giải các dạng toán và bài tập tự luận – trắc nghiệm có đáp án chủ đề Quan hệ vuông góc trong chương trình Hình học 11 chương 3. Nội dung tài liệu : Bài 1. Đường thẳng vuông góc với đường thẳng. Đường thẳng vuông góc với mặt phẳng I. Tóm tắt lý thuyết   1. Đường thẳng vuông góc với đường thẳng. Đường thẳng vuông góc với mặt phẳng 2. Mặt phẳng trung trực của đoạn thẳng II. Các dạng toán + Dạng 1: Đường vuông góc đường. Đường vuông góc mặt + Dạng 2: Góc giữa đường thẳng và mặt phẳng Bài 2. Hai mặt phẳng vuông góc I. Tóm tắt lý thuyết   1. Hai mặt phẳng vuông góc 2. Các định lý quan trọng 3. Hình lăng trụ đứng, hình hộp chữ nhật, hình lập phương 4. Hình chóp đều và hình chóp cụt đều 5. Trục của đường tròn ngoại tiếp tam giác II. Các dạng toán + Dạng 1: Hai mặt phẳng vuông góc + Dạng 2: Góc giữa hai mặt phẳng Bài 3. Khoảng cách  I. Tóm tắt lý thuyết 1. Khoảng cách từ một điểm đến một đường thẳng, đến một mặt phẳng 2. Khoảng cách giữa đường thẳng và mặt phẳng song song, giữa hai mặt phẳng song song 3. Khoảng cách giữa hai đường thẳng chéo nhau II. Các dạng toán + Dạng 1: Khoảng cách từ một điểm đến một mặt phẳng + Dạng 2: Khoảng cách giữa hai đường thẳng chéo nhau Bài 4. Diện tích hình chiếu  Bài 5. Ôn tập Hình học 11 chương 3 [ads] Tài liệu được trình bày bằng LaTex rất đẹp, bạn đọc có thể xem thêm các tài liệu khác của thầy Nguyễn Ngọc Dũng sau đây: + Đường thẳng và mặt phẳng trong không gian, quan hệ song song – Nguyễn Ngọc Dũng (Hình học 11 chương 2) + 100 bài tập trắc nghiệm rèn luyện kỹ năng đọc bảng biến thiên và đồ thị của hàm số – Nguyễn Ngọc Dũng (Giải tích 12 chương 1) + Chuyên đề hàm số lũy thừa, hàm số mũ, hàm số lôgarit – Nguyễn Ngọc Dũng (Giải tích 12 chương 2) + Bài tập trắc nghiệm mặt nón, mặt trụ, mặt cầu có đáp án – Nguyễn Ngọc Dũng (Hình học 12 chương 2) Xem thêm các tài liệu hay về chủ đề quan hệ vuông góc: + Phân dạng và hướng dẫn giải bài toán quan hệ vuông góc trong không gian – Đặng Việt Đông (235 trang) + Chuyên đề vector trong không gian, quan hệ vuông góc – Nguyễn Bảo Vương (165 trang)
Phân dạng và hướng dẫn giải bài toán quan hệ vuông góc trong không gian - Đặng Việt Đông
Tài liệu gồm 235 trang phân dạng, hướng dẫn phương pháp giải và tuyển tập các bài toán trắc nghiệm chủ đề quan hệ vuông góc trong không gian (Hình học 11) có đáp án kèm lời giải chi tiết. Các dạng toán gồm: Véctơ trong không gian Hai đường thẳng vuông góc + Dạng 1. Tính góc giữa hai đường thẳng + Dạng 2. Chứng minh hai đường thẳng vuông góc và các bài toán liên quan Đường thẳng vuông góc với mặt phẳng + Dạng 1. Chứng minh đường thẳng vuông góc với mặt phẳng và đường thẳng vuông góc đường thẳng + Dạng 2. Tính góc giữa đường thẳng và mặt phẳng + Dạng 3. Thiết diện và các bài toán liên quan [ads] Hai mặt phẳng vuông góc + Dạng 1. Góc giữa hai mặt phẳng + Dạng 2. Chứng minh hai mặt phẳng vuông góc, chứng minh đường thẳng vuông góc với mặt phẳng và các bài toán liên quan + Dạng 3. Tính độ dài đoạn thẳng, diện tích hình chiếu, chu vi và diện tích đa giác + Dạng 4. Xác định thiết diện chứa một đường thẳng và vuông góc với một mặt phẳng Khoảng cách + Dạng 1. Tính khoảng cách từ điểm m đến đường thẳng δ + Dạng 2. Tính khoảng cách từ một điểm đến đường thẳng, mặt phẳng + Dạng 3. Khoảng cách giữa đường thẳng và mặt phẳng song song + Dạng 4. Khoảng cách giữa hai mặt phẳng song song + Dạng 5. Khoảng cách giữa hai đường thẳng chéo nhau
Chuyên đề vector trong không gian, quan hệ vuông góc - Nguyễn Bảo Vương
Tài liệu gồm 165 trang gồm lý thuyết, ví dụ mẫu có lời giải chi tiết và bài tập trắc nghiệm chuyên đề vector trong không gian, quan hệ vuông góc. Tập 1. Vectơ trong không gian A. Tóm tắt sách giáo khoa B. Luyện kĩ năng giải các dạng bài tập Bài toán 01: Chứng minh đẳng thức vectơ Bài toán 02: Chứng minh ba vectơ đồng phẳng và bốn điểm đồng phẳng Bài toán 03: Tính độ dài của đoạn thẳng Bài toán 04: Sử dụng điều kiện đồng phẳng của bốn điểm để giải bài toán hình không gian Các bài toán luyện tập Tập 2. Góc giữa hai đường thẳng. Hai đường thẳng vuông góc A. Chuẩn kiến thức B. Luyện kĩ năng giải các dạng bài tập Bài toán 01: Tính góc giữa hai đường thẳng Bài toán 02: Dùng tích vô hướng để chứng minh hai đường thẳng vuông góc Các bài toán luyện tập [ads] Tập 3. Đường thẳng và mặt phẳng vuông góc A. Chuẩn kiến thức B. Luyện kĩ năng giải các dạng bài tập Bài toán 01: Chứng minh đường thẳng vuông góc với mặt phẳng Bài toán 02: Thiết diện đi qua một điểm và vuông góc với một đường thẳng Bài toán 03: Tính góc gữa đường thẳng và mặt phẳng Bài toán 04: Tìm tập hợp hình chiếu của một điểm trên một đường thẳng hay một mặt phẳng di động Các bài toán luyện tập Tập 4. Hai mặt phẳng vuông góc – khoảng cách Hai mặt phẳng vuông góc A. Chuẩn kiến thức B. Luyện kĩ năng giải các dạng bài tập Bài toán 01: Tính góc giữa hai mặt phẳng Bài toán 02: Chứng minh hai mặt phẳng vuông góc Bài toán 03: Ứng dụng công thức hình chiếu Bài toán 04: Xác định thiết diện chứa một đường thẳng và vuông góc với một mặt phẳng Khoảng cách A. Chuẩn kiến thức B. Luyện kĩ năng giải các dạng bài tập Bài toán 01: Tính khoảng cách từ điểm đến đường thẳng Bài toán 02: Tính khoảng cách từ một điểm đến một mặt phẳng Bài toán 03: Khoảng cách giữa hai đường thẳng chéo nhau Bài toán 04: Ứng dụng phép chiếu vuông góc để tính khoảng cách giữa hai đường thẳng chéo nhau Các bài toán luyện tập Tập 5. 280 bài tập trắc nghiệm tự luyện Tổng hợp lần 1. Chương III. Quan hệ vuông góc Đáp án Tổng hợp lần 2. Chương III: Vectơ trong không gian Bài 1: Vectơ trong không gian Bài 2: Hai đường thẳng vuông góc Bài 3: Đường thẳng vuông góc với mặt phẳng Bài 4: Hai mặt phẳng vuông góc Bài 5: Khoảng cách Tổng hợp lần 3. Chương 3. Vectơ – quan hệ vuông góc Đáp án
Bài toán khoảng cách trong không gian - Phạm Hồng Phong
Tài liệu gồm 14 trang hướng dẫn phương pháp xác định và tính khoảng cách trong không gian và các ví dụ áp dụng có hướng dẫn giải. A. Tóm tắt lý thuyết Loại 1. Khoảng cách từ điểm đến mặt phẳng, một đường thẳng Định nghĩa: Khoảng cách từ một điểm đến mặt phẳng (hoặc đường thẳng) bằng khoảng cách từ điểm đó tới hình chiếu vuông góc của nó lên mặt phẳng (hoặc đường thẳng). Bài toán cơ bản: Nhiều bài toán tính khoảng cách từ điểm tới mặt phẳng, từ điểm tới đường thẳng có thể quy về bài toán cơ bản sau: Cho hình chóp S.ABC có SA vuông góc với đáy. Tính khoảng cách từ điểm A đến mặt phẳng (SBC) và khoảng cách từ điểm S đến đường thẳng BC. [ads] Loại 2. Khoảng cách giữa hai đường thẳng chéo nhau. Đường vuông góc chung của hai đường thẳng Định nghĩa: Cho hai đường thẳng chéo nhau a và b: + Đường thẳng d cắt a, b và vuông góc với a, b được gọi là đường vuông góc chung của a và b. + Nếu đường vuông góc chung cắt a, b lần lượt tại M, N thì độ dài đoạn thẳng MN được gọi là khoảng cách giữa hai đường thẳng chéo nhau a và b. Cách tìm đường vuông góc chung của hai đường thẳng chéo nhau + Phương pháp tổng quát: Cho hai đường thẳng chéo nhau a, b . Gọi (α) là mặt phẳng chứa b và song song với a, a ‘ là hình chiếu vuông góc của a lên (α). Đặt N = a’ ∩ b, gọi Δ là đường thẳng qua N và vuông góc với (α) ⇒ Δ là đường vuông góc chung của a và b. Đặt M = Δ ∩ a ⇒ khoảng cách giữa a và b là độ dài đường thẳng MN. + Trường hợp đặc biệt: Cho hai đường thẳng chéo nhau và vuông góc với nhau a, b . Gọi (α) là mặt phẳng chứa b và vuông góc với a. Đặt M = a ∩ (α). Gọi N là chân đường vuông góc hạ từ M xuống b ⇒ MN là đường vuông góc chung của a, b và khoảng cách giữa a, b là độ dài đoạn thẳng MN. Nhận xét: Cho hai đường thẳng chéo nhau a và b. Các nhận xét nhau đây cho ta cách khác để tính khoảng cách giữa a và b ngoài cách dựng đường vuông góc chung: + Nếu (α) là mặt phẳng chứa a và song song với b thì khoảng cách giữa hai đường thẳng bằng khoảng cách giữa b và (α). + Nếu (α), (β) là các mặt phẳng song song với nhau, lần lượt chứa a, b thì khoảng cách giữa hai đường thẳng bằng khoảng cách giữa (α) và (β) B. Một số ví dụ C. Bài tập