Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài tập quan hệ song song trong không gian - Võ Công Trường

Tài liệu gồm 73 trang, được biên soạn bởi thầy giáo Võ Công Trường, phân dạng và tuyển chọn bài tập quan hệ song song trong không gian trong chương trình môn Toán lớp 11. MỤC LỤC : Chương IV . ĐƯỜNG THẲNG VÀ MẶT PHẲNG. QUAN HỆ SONG SONG TRONG KHÔNG GIAN 3. BÀI 1 . ĐIỂM, ĐƯỜNG THẲNG VÀ MẶT PHẲNG TRONG KHÔNG GIAN 3. I. TÓM TẮT LÝ THUYẾT 3. II. DẠNG TOÁN THƯỜNG GẶP 5. + Dạng 1. Tìm giao tuyến của hai mặt phẳng 5. + Dạng 2. Tìm giao điểm của đường thẳng và mặt phẳng 6. + Dạng 3. Ba điểm thẳng hàng, ba đường thẳng đồng quy 7. + Dạng 4. Thiết diện 7. III. GIẢI BÀI TẬP SÁCH GIÁO KHOA 8. IV. BÀI TẬP TRẮC NGHIỆM 10. BÀI 2 . HAI ĐƯỜNG THẲNG SONG SONG 14. I. TÓM TẮT LÝ THUYẾT 14. II. DẠNG TOÁN THƯỜNG GẶP 15. + Dạng 1. Tìm giao tuyến hai mặt phẳng 15. + Dạng 2. Tìm giao điểm của đường thẳng và mặt phẳng; thiết diện của hình chóp 16. III. GIẢI BÀI TẬP SÁCH GIÁO KHOA 16. IV. BÀI TẬP TRẮC NGHIỆM 18. BÀI 3 . ĐƯỜNG THẲNG VÀ MẶT PHẲNG SONG SONG 20. I. TÓM TẮT LÝ THUYẾT 20. II. DẠNG TOÁN THƯỜNG GẶP 21. + Dạng 1. Chứng minh đường thẳng song song mặt phẳng 21. + Dạng 2. Tìm giao tuyến của hai mặt phẳng. Thiết diện qua một điểm và song song với một đường thẳng 22. III. GIẢI BÀI TẬP SÁCH GIÁO KHOA 22. IV. BÀI TẬP TRẮC NGHIỆM 25. BÀI 4 . HAI MẶT PHẲNG SONG SONG 27. I. TÓM TẮT LÝ THUYẾT 27. II. DẠNG TOÁN THƯỜNG GẶP 28. + Dạng 1. Chứng minh hai mặt phẳng song song 28. + Dạng 2. Chứng minh đường thẳng song song với mặt phẳng 28. III. GIẢI BÀI TẬP SÁCH GIÁO KHOA 29. IV. BÀI TẬP TRẮC NGHIỆM 31. BÀI 5 . PHÉP CHIẾU SONG SONG 34. I. TÓM TẮT LÝ THUYẾT 34. II. DẠNG TOÁN THƯỜNG GẶP 35. + Dạng 1. Vẽ hình biểu diễn của một hình trong không gian 35. III. GIẢI BÀI TẬP SÁCH GIÁO KHOA 37. IV. BÀI TẬP TRẮC NGHIỆM 38. BÀI TẬP ÔN CHƯƠNG IV 40. PHẦN 1. BÀI TẬP TRẮC NGHIỆM 40. PHẦN 2. BÀI TẬP TỰ LUẬN THAM KHẢO 45. PHẦN 3. BÀI TẬP TỰ LUẬN TỰ LUYỆN 49.

Nguồn: toanmath.com

Đọc Sách

Hệ thống bài tập trắc nghiệm VDC PT - BPT - HPT mũ - logarit (phần 11 - 20)
Tài liệu gồm 21 trang được biên soạn bởi thầy giáo Lương Tuấn Đức (facebook: Giang Sơn), tuyển chọn hệ thống bài tập trắc nghiệm vận dụng cao, phân loại phương trình, bất phương trình, hệ phương trình mũ – logarit (từ phần 11 đến phần 20), giúp học sinh tiếp cận với các dạng toán nâng cao trong chương trình Giải tích 12 chương 2 (hàm số lũy thừa, hàm số mũ và hàm số logarit) và ôn thi tốt nghiệp THPT môn Toán. Trích dẫn tài liệu hệ thống bài tập trắc nghiệm vận dụng cao, phân loại phương trình, bất phương trình, hệ phương trình mũ – logarit (phần 11 – 20): + Đường thẳng x = k cắt đồ thị hàm số y = log5 x và đồ thị hàm số y = log5 (x + 4). Khoảng cách giữa các giao điểm là 1/2. Biết k = a + √b, trong đó a và b là các số nguyên. Khi đó tổng a + b bằng? [ads] + Cho ba số thực dương x, y, z thỏa mãn log5 x = log12 y = log84 z = log85 (x + y + z). Khi đó giá trị biểu thức logxyz 2020 nằm trong khoảng nào sau đây? + Cho các số thực dương a, b thỏa mãn đẳng thức ln (ab) + a + 2 = e^(a – eb) + b(a + e). Giá trị biểu thức ln (2a + 3b) nằm trong khoảng nào sau đây? Xem thêm : Hệ thống bài tập trắc nghiệm vận dụng cao, phân loại hàm số mũ, logarit (phần 1 – 10)
Bài tập VD VDC hàm số luỹ thừa, hàm số mũ và hàm số lôgarit
Tài liệu gồm 86 trang, được tổng hợp bởi thầy giáo Nguyễn Bảo Vương, tuyển chọn 131 câu hỏi và bài tập trắc nghiệm chuyên đề hàm số luỹ thừa, hàm số mũ và hàm số lôgarit, mức độ vận dụng và vận dụng cao (VD – VDC), có đáp án và lời giải chi tiết, được trích dẫn từ các đề thi thử THPT Quốc gia môn Toán năm học 2019 – 2020. Tài liệu phù hợp với đối tượng học sinh có học lực khá – giỏi, ôn thi điểm 8 – 9 – 10 trong đề thi tốt nghiệp THPT 2020 môn Toán. Khái quát nội dung tài liệu bài tập VD – VDC hàm số luỹ thừa, hàm số mũ và hàm số lôgarit: + Vấn đề 1. Một số bài toán thực tế – biến đổi mũ – logarit. + Vấn đề 2. Phương trình và bất phương trình mũ – logarit. + Vấn đề 3. Phương trình và bất phương trình mũ – logarit chứa tham số. + Vấn đề 4. Phương trình và bất phương trình mũ – logarit nhiều ẩn. + Vấn đề 5. Giá trị nhỏ nhất và giá trị lớn nhất của biểu thức chứa mũ – logarit.
Hệ thống bài tập trắc nghiệm vận dụng cao, phân loại hàm số mũ, logarit
Tài liệu gồm 21 trang được biên soạn bởi thầy giáo Lương Tuấn Đức (Giang Sơn), tuyển tập hệ thống bài tập trắc nghiệm vận dụng cao, phân loại hàm số mũ, hàm số logarit thuộc chương trình Toán 12 (Giải tích 12), dành cho học sinh khá, giỏi, nhằm ôn tập chuẩn bị cho kỳ thi THPT Quốc gia môn Toán. Trích dẫn tài liệu hệ thống bài tập trắc nghiệm vận dụng cao, phân loại hàm số mũ, logarit: + Phương trình 4^(x^2 – 3x + 2) + 4^(x^2 + 6x + 5) = 4^(2x^2 + 3x + 7) + 1 có bốn nghiệm phân biệt a, b, c, d theo thứ tự tăng dần. Tính giá trị biểu thức a + 2b + 3c + 4d. + Giả sử a, b là các số thực sao cho x^3 + y^3 = a.10^3z + b.10^2z đúng với mọi số thực dương x, y, z thỏa mãn điều kiện log(x + y) = z; log(x^2 + y^2) = z + 1. Giá trị của a + b là? [ads] + Cho các số thực dương a, b khác 1. Biết rằng bất kỳ đường thẳng nào song song với trục hoành mà cắt các đường thẳng y = a^x; y = b^x, trục tung lần lượt tại M, N và A thì ta luôn có AN = 2AM (hình vẽ bên). Mệnh đề nào sau đây đúng ? + Cho hàm số y = loga x; y = logb x có đồ thị như hình vẽ bên. Đường thẳng x = 7 cắt trục hoành và các đồ thị hàm số y = loga x; y = logb x lần lượt tại H, M, N. Biết rằng 2HM = HN. Mệnh đề nào sau đây đúng? + Biết tập hợp tất cả các giá trị của tham số m để bất phương trình 4^ sin^2x + 5cos^2x ≤ m.7cos^2x có nghiệm là nửa khoảng [a/b;+vc) với a, b nguyên dương và phân số a/b tối giản. Tính giá trị của S = a + b.
Bài tập mũ và lôgarit vận dụng cao có lời giải chi tiết - Nguyễn Xuân Chung
Tài liệu gồm có 56 trang được tổng hợp và biên soạn bởi thầy giáo Nguyễn Xuân Chung, chọn lọc các câu hỏi và bài tập trắc nghiệm chủ đề mũ và lôgarit vận dụng cao (cách gọi khác: mũ và lôgarit nâng cao, mũ và lôgarit khó, mũ và lôgarit VDC …) có đáp án, lời giải chi tiết và bình luận sau bài toán, giúp bạn đọc hiểu được hướng tư duy, tiếp cận và giải quyết bài toán; phần lời giải chi tiết được trình bày ngắn gọn, có hướng dẫn sử dụng máy tính cầm tay Casio – Vinacal để giải nhanh; tài liệu giúp học sinh giải quyết tốt các bài toán khó trong chương trình Giải tích 12 và ôn thi THPT Quốc gia môn Toán. Nội dung tài liệu bài tập mũ và lôgarit vận dụng cao có lời giải chi tiết – Nguyễn Xuân Chung được tác giả chia thành ba phần: phần thứ nhất gồm các câu hỏi và bài tập được trích từ các đề thi THPT Quốc gia môn Toán chính thức, các đề minh họa, đề tham khảo THPT Quốc gia môn Toán của Bộ Giáo dục và Đào tạo trong những năm gần đây; phần thứ hai gồm các câu hỏi và bài tập được trích từ các đề thi thử THPT Quốc gia môn Toán của các trường THPT và sở GD&ĐT trên cả nước; phần thứ ba gồm một số câu hỏi và bài tập tương tự giúp học sinh rèn luyện thêm. [ads] Trích dẫn tài liệu bài tập mũ và lôgarit vận dụng cao có lời giải chi tiết – Nguyễn Xuân Chung: + Cho phương trình 2^x = √(m.2^x.cos(pi.x) – 4) với m là tham số thực. Gọi m0 là giá trị của m để phương trình đã cho có đúng 1 nghiệm thực. Mệnh đề nào sau đây đúng? + Cho hai số thực dương x và y thỏa mãn điều kiện: 3 + ln((x + y + 1)/3xy) = 9xy – 3x – 3y. Giá trị nhỏ nhất của biểu thức P = xy là? + Cho hàm số y = f(x) liên tục trên R và có đồ thị như hình vẽ dưới đây. Có bao nhiêu giá trị nguyên của m để phương trình f(2log_2 x) = m có nghiệm duy nhất trên [1/2;2). + Đồ thị hàm số y = f(x) đối xứng với đồ thị của hàm số y = a^x (a > 0 và a khác 1) qua điểm I(1;1). Giá trị của biểu thức f(2 + log_a 1/2018) bằng? + Đây là bài toán khó vì số mũ của lũy thừa là biểu thức phức tạp. Nếu để nguyên để khảo sát thì gặp khó khăn lớn khi phải đạo hàm và tìm nghiệm, rồi còn phải lập bảng biến thiên … do đó gặp tình huống này thì chúng ta nghĩ đến phương pháp đánh giá để giảm độ phức tạp. Nói như vậy: phương pháp đạo hàm là công cụ mạnh để giải toán hàm số, nhưng trong trường hợp này chưa chắc tỏ ra là “mạnh”. Bài toán trên là thi Olimpic hay sao nhỉ? Ra đề thi kiểu như vậy thì bó tay!