Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Kiến thức và bài tập đường thẳng vuông góc và đường thẳng song song

Nội dung Kiến thức và bài tập đường thẳng vuông góc và đường thẳng song song Bản PDF - Nội dung bài viết Kiến thức và bài tập về đường thẳng vuông góc và đường thẳng song song Kiến thức và bài tập về đường thẳng vuông góc và đường thẳng song song Tài liệu này bao gồm 22 trang được biên soạn bởi tác giả Toán Họa, tổng hợp kiến thức và bài tập về đường thẳng vuông góc và đường thẳng song song trong chương trình Hình học lớp 7 chương 1. Khái quát nội dung tài liệu kiến thức và bài tập về đường thẳng vuông góc và đường thẳng song song: BÀI 1. Hai góc đối đỉnh: Hai góc đối đỉnh là hai góc mà mỗi cạnh của góc này là tia đối của một cạnh góc kia. Hai góc đối đỉnh thì bằng nhau. Mỗi góc chỉ có một góc đối đỉnh với nó. Hai góc bằng nhau chưa chắc đã đối đỉnh. BÀI 2. Hai góc đối đỉnh: Hai đường thẳng vuông góc là hai đường thẳng cắt nhau và tạo ra góc vuông. Qua một điểm cho trước, chỉ có một và chỉ một đường thẳng vuông góc với một đường thẳng cho trước. Đường trung trực của một đoạn thẳng là đường thẳng vuông góc với đoạn thẳng đó tại trung điểm của nó. BÀI 3. Các góc tạo bởi một đường thẳng cắt hai đường thẳng: Hai đường thẳng vuông góc là hai đường thẳng cắt nhau và tạo ra góc vuông. Nếu hai đường thẳng cắt một đường thẵng thứ ba và tạo ra các góc so le bằng nhau, thì các điều kiện song song là: Hai góc so le trong còn lại bằng nhau. Hai góc đồng vị bằng nhau. Hai góc trong cùng phía bù nhau. BÀI 4. Hai đường thẳng song song: Hai đường thẳng song song (trong mặt phẳng) là hai đường thẳng không có điểm chung. Điều kiện để các đường thẳng là song song: Nếu đường thẳng cắt hai đường thẳng khác và tạo ra các góc so le bằng nhau, thì các đường thẳng đó song song. Hai đường thẳng phân biệt cùng song song với đường thẳng thứ ba thì chúng song song. BÀI 5. Tiên đề Ơclit về đường thẳng song song: Qua một điểm nằm ngoài một đường thẳng, chỉ có một đường thẳng song song với đường thẳng đó. Nếu hai đường thẳng song song bị cắt bởi một đường thẳng thứ ba, thì các điều kiện là: Hai góc so le trong bằng nhau. Hai góc đồng vị bằng nhau. Hai góc trong cùng phía bù nhau. BÀI 6. Từ vuông góc tới song song: Nếu hai đường thẳng cùng vuông góc với một đường thẳng thứ ba, thì chúng song song với nhau. Nếu một đường thẳng vuông góc với một trong hai đường thẳng song song thì nó cũng vuông góc với đường kia. Hai đường thẳng cùng song song với một đường thẳng thứ ba thì chúng song song với nhau. BÀI 7. Định lí: Một tính chất được khẳng định là đúng bằng suy luận gọi là một định lí. Giả thiết của định lí là điều cho biết, kết luận của định lí là điều được suy ra. Chứng minh định lí là dùng luận để từ giả thiết suy ra kết luận. Đề kiểm tra Hình học lớp 7 chương 1: Trên đây là bản tóm tắt về nội dung kiến thức và bài tập về đường thẳng vuông góc và đường thẳng song song. Hy vọng thông tin này sẽ giúp bạn hiểu rõ hơn về chủ đề này và áp dụng vào việc học tập của mình.

Nguồn: sytu.vn

Đọc Sách

Chuyên đề tính chất tia phân giác của một góc
Tài liệu gồm 10 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề tính chất tia phân giác của một góc, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 7 trong quá trình học tập chương trình Toán 7 phần Hình học chương 3: Quan hệ giữa các yếu tố trong tam giác, các đường đồng quy trong tam giác. Mục tiêu : Kiến thức: + Phát biểu được các định lí về tính chất các điểm thuộc tia phân giác. Kĩ năng: + Vận dụng được tính chất tia phân giác của một góc để chứng minh tính chất hình học. + Sử dụng được định lí đảo để chứng minh một tia là tia phân giác của một góc. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Vận dụng tính chất phân giác của một góc để chứng minh các đoạn thẳng bằng nhau. Áp dụng định lí thuận: Điểm nằm trên tia phân giác của một góc thì cách đều hai cạnh của góc đó. Dạng 2 : Chứng minh một tia là tia phân giác của một góc. Cách 1. Sử dụng định lí đảo. Cách 2. Sử dụng định nghĩa tia phân giác. Cách 3. Chứng minh hai góc bằng nhau nhờ hai tam giác bằng nhau. Cách 4. Dùng tính chất đường trung tuyến trong tam giác cân đồng thời là đường phân giác.
Chuyên đề tính chất ba đường trung tuyến của tam giác
Tài liệu gồm 11 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề tính chất ba đường trung tuyến của tam giác, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 7 trong quá trình học tập chương trình Toán 7 phần Hình học chương 3: Quan hệ giữa các yếu tố trong tam giác, các đường đồng quy trong tam giác. Mục tiêu : Kiến thức: + Phát biểu được định nghĩa đường trung tuyến của tam giác. + Phát biểu được tính chất ba đường trung tuyến của tam giác. Kĩ năng: + Vẽ được các đường trung tuyến của tam giác. + Vận dụng được các định nghĩa và tính chất về đường trung tuyến. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Sử dụng tính chất trọng tâm tam giác. – Ba đường trung tuyến của tam giác đồng quy tại một điểm. Điểm này gọi là trọng tâm của tam giác. – Trọng tâm của tam giác cách mỗi đỉnh một khoảng bằng 2 3 độ dài đường trung tuyến đi qua đỉnh ấy. Bước 1. Xác định trọng tâm nằm trên đường trung tuyến nào. Bước 2. Sử dụng linh hoạt tỉ lệ khoảng cách từ trọng tâm đến hai đầu đoạn thẳng trung tuyến. Dạng 2 : Chứng minh một điểm là trọng tâm tam giác. Sử dụng tính chất trọng tâm. Chẳng hạn để chứng minh G là trọng tâm tam giác ABC, có ba đường trung tuyến AD, BE, CF thì ta chứng minh. Cách 1. G AD và 2 3 GA AD hoặc G BE và 2 3 GB BE hoặc G CF và 2 3 GC CF. Cách 2. Chứng minh G là giao điểm của hai trong ba đường trung tuyến của tam giác ABC. Dạng 3 : Đường trung tuyến của tam giác cân, tam giác đều, tam giác vuông. Chú ý đến tính chất của tam giác cân, tam giác đều và tam giác vuông.
Chuyên đề quan hệ giữa ba cạnh của một tam giác, bất đẳng thức tam giác
Tài liệu gồm 08 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề quan hệ giữa ba cạnh của một tam giác, bất đẳng thức tam giác, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 7 trong quá trình học tập chương trình Toán 7 phần Hình học chương 3: Quan hệ giữa các yếu tố trong tam giác, các đường đồng quy trong tam giác. Mục tiêu : Kiến thức: + Phát biểu được định lí và hệ quả của bất đẳng thức tam giác. Kĩ năng: + Vận dụng được định lí và hệ quả của bất đẳng thức tam giác trong các bài toán. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Sử dụng điều kiện tồn tại một tam giác dựa vào yếu tố độ dài ba cạnh. – Ba đoạn thẳng a, b, c lập thành một tam giác nếu. – Trong trường hợp xác định được a là số lớn nhất trong ba số a, b, c thì điều kiện tồn tại tam giác chỉ cần a b c. Bước 1. Dựa vào bất đẳng thức tam giác xét các trường hợp. Bước 2. Lựa chọn giá trị thích hợp. Dạng 2 : Chứng minh các bất đẳng thức về độ dài. – Sử dụng bất đẳng thức tam giác và các biến đổi về bất đẳng thức. – Cộng cùng một số vào hai vế của bất đẳng thức. – Cộng từng vế hai bất đẳng thức cùng chiều.
Chuyên đề quan hệ giữa đường vuông góc và đường xiên, đường xiên và hình chiếu
Tài liệu gồm 15 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề quan hệ giữa đường vuông góc và đường xiên, đường xiên và hình chiếu, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 7 trong quá trình học tập chương trình Toán 7 phần Hình học chương 3: Quan hệ giữa các yếu tố trong tam giác, các đường đồng quy trong tam giác. Mục tiêu : Kiến thức: + Phân biệt được đường vuông góc, đường xiên, hình chiếu. + Phát biểu được quan hệ giữa đường vuông góc và đường xiên, đường xiên và hình chiếu. Kĩ năng: + Vận dụng được mối quan hệ giữa đường vuông góc và đường xiên, đường xiên và hình chiếu trong bài tập. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : So sánh hai đường xiên hoặc hai hình chiếu. – Định lí: Trong hai đường xiên kẻ từ một điểm nằm ngoài một đường thẳng đến đường thẳng đó thì: + Đường xiên nào có hình chiếu lớn hơn thì lớn hơn. + Đường xiên nào lớn hơn thì có hình chiếu lớn hơn. – Thực hiện theo hai bước: + Bước 1. Xác định xem hai đoạn thẳng cần so sánh là đường xiên hay hình chiếu của đường xiên lên đường thẳng: Nếu là đường xiên thì cần so sánh hai hình chiếu của chúng (dựa vào giả thiết bài toán); Nếu là hình chiếu của hai đường xiên thì cần so sánh hai đường xiên (dựa vào giả thiết bài toán). + Bước 2. So sánh hai đoạn thẳng dựa vào định lí đường xiên – hình chiếu. Dạng 2 : Quan hệ giữa đường vuông góc và đường xiên. Sử dụng định lí: “Đường vuông góc ngắn hơn mọi đường xiên kẻ từ một điểm đến cùng một đường thẳng”.