Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát HSG lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Kim Thành Hải Dương

Nội dung Đề khảo sát HSG lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Kim Thành Hải Dương Bản PDF - Nội dung bài viết Đề khảo sát Học sinh giỏi Toán lớp 9 năm 2022 - 2023 phòng GD&ĐT Kim Thành - Hải Dương Đề khảo sát Học sinh giỏi Toán lớp 9 năm 2022 - 2023 phòng GD&ĐT Kim Thành - Hải Dương Sytu hân hạnh giới thiệu đến quý thầy cô và các em học sinh lớp 9 đề khảo sát Học sinh giỏi môn Toán lớp 9 năm học 2022 - 2023 của phòng Giáo dục và Đào tạo UBND huyện Kim Thành, tỉnh Hải Dương. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn từ Đề khảo sát HSG Toán lớp 9 năm 2022 - 2023 của phòng GD&ĐT Kim Thành - Hải Dương: - Tìm a, b sao cho đa thức \(3x^2 + ax + b^2\) chia hết cho đa thức \(x - 1\) dư 2, chia hết cho đa thức \(x - 2\) dư 17. Cho \(a, b, c\) là ba số nguyên tố cùng nhau thỏa mãn: \(111 = c \cdot ab\). Chứng minh: \(M = ab\) là số chính phương. - Cho tam giác \(ABC\) vuông tại \(A\), có đường cao \(AH\). Kẻ \(HI\) vuông góc với \(AB\), \(HK\) vuông góc với \(AC\) (\(I\) thuộc \(AB\), \(K\) thuộc \(AC\)). Chứng minh: a) \(\frac{BI}{AB} = \frac{CK}{AC}\) b) \(CK \cdot BH = BI \cdot CH = AH \cdot BC\). - Cho \(\triangle ABC\) có \(G\) là trọng tâm, một đường thẳng bất kỳ qua \(G\), cắt các cạnh \(AB\), \(AC\) lần lượt tại \(M\) và \(N\). Chứng minh rằng: \(\frac{AM}{AB} = \frac{AN}{AC} = \frac{3}{2}\). - Cho các số dương \(x, y, z\) thay đổi thỏa mãn: \(xy + yz + zx = xyz\). Tìm giá trị lớn nhất của biểu thức: \(111 - \frac{43}{4} - \frac{433}{4} \cdot \frac{x \cdot y \cdot z}{x + y + z}\). File WORD (dành cho quý thầy cô) đã được chuẩn bị sẵn. Các bạn học sinh hãy cùng nhau tham gia và thử sức với đề thi này để rèn luyện kiến thức và kỹ năng Toán của mình nhé!

Nguồn: sytu.vn

Đọc Sách

Đề thi học sinh giỏi Toán 9 năm 2022 - 2023 trường THCS Cộng Hòa - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra đội tuyển học sinh giỏi môn Toán 9 năm học 2022 – 2023 trường THCS Cộng Hòa, huyện Kim Thành, tỉnh Hải Dương; đề thi gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút (không kể thời gian phát đề); đề thi có đáp án, lời giải chi tiết và thang hướng dẫn chấm điểm. Trích dẫn Đề thi học sinh giỏi Toán 9 năm 2022 – 2023 trường THCS Cộng Hòa – Hải Dương : + Tìm tất cả các số nguyên tố p để 4p2 + 1 và 6p2 + 1 cũng là số nguyên tố. + Cho tam giác nhọn ABC có ba đường cao AD, BE, CF cắt nhau tại H. Trên các đoạn thẳng HA, HB, HC lần lượt lấy các điểm M, N, P sao cho BMC = CNA = APB = 90°. a) Chứng minh tam giác ANP cân. b) Gọi S, S1, S2 lần lượt là diện tích các tam giác MBC, ABC và HBC. Chứng minh rằng: S = S1S2 2) Cho tam giác ABC vuông tại A, đường cao AH. Tia phân giác của góc BAH cắt BH ở D. Gọi M là trung điểm của cạnh AB. Gọi E là giao điểm của MD và AH. Chứng minh rằng: AD // CE. + Cho a, b, c là các số thực dương thỏa mãn a2 + b2 + c2 =< 3. Chứng minh rằng?
Đề thi thử HSG Toán 9 năm 2022 - 2023 trường THCS Lai Vu - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử chọn học sinh giỏi môn Toán 9 năm học 2022 – 2023 trường THCS Lai Vu, huyện Kim Thành, tỉnh Hải Dương; đề thi gồm 01 trang với 05 bài toán hình thức tự luận, thời gian học sinh làm bài thi là 120 phút. Trích dẫn đề thi thử HSG Toán 9 năm 2022 – 2023 trường THCS Lai Vu – Hải Dương : + Cho tam giác ABC vuông tại A, đường cao AH. Gọi D là trung điểm AH, BD cắt AC tại E. Kẻ HK song song với AE (K thuộc BE) a) Chứng minh cos2B = EA/EC. b) Gọi M là điểm đối xứng của A qua B, N thuộc tia đối của tia HA sao cho HN = 2HA. Gọi P là trung điểm của HN. Chứng minh MN vuông góc NC. + Cho tam giác ABC vuông tại A (AB < AC), các đường phân giác trong và ngoài tại đỉnh A của tam giác cắt BC lần lượt tại M, N. Chứng minh 1 1 1 AM AN AB. + Cho các số nguyên dương a, b thỏa mãn: (a – 2021)(b + 2021) = 4 và ba số thực dương x; y; z sao cho xyz = 1. Chứng minh rằng?
Đề thi thử học sinh giỏi huyện Toán 9 năm 2022 - 2023 THCS Lăng Thành - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử kỳ thi chọn học sinh giỏi cấp huyện môn Toán 9 năm học 2022 – 2023 trường THCS Lăng Thành, tỉnh Nghệ An. Trích dẫn đề thi thử học sinh giỏi huyện Toán 9 năm 2022 – 2023 THCS Lăng Thành – Nghệ An : + Tìm số tự nhiên n để A = 2n + 3n + 4n là một số chính phương. + Cho a, b là các số hữu tỉ thỏa mãn a + b và a.b đều là số nguyên. Chứng minh a và b đều là số nguyên. + Cho đường tròn (O) đường kính AB và điểm C nằm bên ngoài đường tròn sao cho CA và CB lần lượt cắt đường tròn (O) tại điểm thứ hai là D và E. AE cắt BD tại H và CH cắt AB tại F. Chứng minh: a) CED = CAB b) AD.AC = AF.AB c) HE HD HF.
Tuyển tập 50 đề thi học sinh giỏi Toán 9 cấp huyện quận có lời giải