Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi Toán 12 THPT năm 2018 - 2019 sở GDĐT Cần Thơ

Ngày 27 tháng 02 năm 2019, sở Giáo dục và Đào tạo Cần Thơ tổ chức kỳ thi chọn học sinh giỏi khối THPT cấp thành phố lớp 12 môn Toán năm học 2018 – 2019. Đề thi học sinh giỏi Toán 12 THPT năm 2018 – 2019 sở GD&ĐT Cần Thơ gồm 02 trang với 08 bài toán tự luận, học sinh làm bài thi trong 180 phút, đề thi có lời giải chi tiết (lời giải được trình bày bởi quý thầy, cô giáo nhóm Toán VD – VDC). Trích dẫn đề thi học sinh giỏi Toán 12 THPT năm 2018 – 2019 sở GD&ĐT Cần Thơ : + Một lớp học trong một trường đại học có 60 sinh viên, trong đó có 40 sinh viên học tiếng Anh, 30 sinh viên học tiếng Pháp và 20 sinh viên học cả tiếng Anh và tiếng Pháp. Chọn ngẫu nhiên 2 sinh viên của lớp học này. Tính xác suất để 2 sinh viên được chọn không học ngoại ngữ. Biết rằng trường này chỉ dạy hai ngoại ngữ là tiếng Anh và tiếng Pháp. [ads] + Năm bạn học sinh Tính, Nghĩa, Tuấn, Phú và Thuận ở chung một phòng trong ký túc xá của một trường trung học phô thông. Một hôm, người quản lý ký túc xá đến phòng của năm học sinh này để xác định lại hộ khẩu nhà của từng học sinh. Vì đều là học sinh giỏi toán nên các học sinh không trả lời trực tiếp mà nói với người quản lý ký túc xá như sau: – Tính: “Nhà bạn Phú ở Thới Lai còn nhà em ở Cờ Đỏ”. – Nghĩa: “Nhà em cũng ở Cờ Đỏ còn nhà bạn Tuấn ở Ô Môn”. – Tuấn: “Nhà em cũng ở Cờ Đỏ còn nhà bạn Phú ở Thốt Nốt”. – Phú: “Nhà em ở Thới Lai còn nhà bạn Thuận ở Ninh Kiều”. – Thuận: “Nhà em ở Ninh Kiều còn nhà bạn Tính ở Thốt Nốt. Em hãy giúp người quản lý ký túc xá xác định đúng hộ khẩu nhà của các học sinh trên. Biết răng trong câu trả lời của mỗi học sinh đều có một phần đúng và một phần sai đồng thời mỗi địa phương là địa chỉ hộ khâu của đúng một học sinh. + Một nhà sản xuất sữa bột dành cho trẻ em cần thiết kế bao bì cho loại sản phẩm mới. Theo yêu cầu của lãnh đạo nhà máy, hộp sữa mới có dạng hình hộp chữ nhật với đáy là hình vuông hoặc có dạng một hình trụ. Biết rằng hộp sữa mới có thể tích bằng 1dm3. Hãy giuýp lãnh đạo nhà máy thiết kế hộp sữa này sao cho vật liệu sử dụng làm bao bì là ít nhất.

Nguồn: toanmath.com

Đọc Sách

Đề thi chọn HSG tỉnh Toán 12 THPT năm 2021 - 2022 sở GDĐT Quảng Bình
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 12 THPT năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Quảng Bình; kỳ thi được diễn ra vào ngày 22 tháng 03 năm 2022. Trích dẫn đề thi chọn HSG tỉnh Toán 12 THPT năm 2021 – 2022 sở GD&ĐT Quảng Bình : + Cho hình chóp S.ABCD, đáy ABCD là hình chữ nhật có AB a AD b SA vuông góc với đáy và SA a 2. Gọi M là điểm nằm trên cạnh SA sao cho AM x 0 2 x a. a. Tính diện tích thiết diện của hình chóp S.ABCD cắt bởi mặt phẳng MBC theo a, b và x. b. Tìm x theo a để mặt phẳng MBC chia khối chóp S.ABCD thành hai phần có thể tích bằng nhau. c. Trong trường hợp ABCD là hình vuông cạnh a, gọi K là điểm di động trên CD, H là hình chiếu của S lên BK. Tìm vị trí của điểm K trên CD để thể tích khối chóp S.ABH là lớn nhất. + Gọi A là tập hợp tất cả các số tự nhiên có 5 chữ số. Chọn ngẫu nhiên một số từ tập hợp A. Tính xác suất để chọn được một số sao cho số đó chia hết cho 7 và có chữ số hàng đơn vị bằng 1. + Trong không gian Oxyz, cho mặt cầu 2 2 2 Sx y z 1 4 8 và hai điểm A 3 0 0 B 4 2 1. Gọi M là một điểm bất kỳ thuộc mặt cầu S. Tìm giá trị nhỏ nhất của biểu thức MA MB 2.
Đề thi học sinh giỏi tỉnh Toán 12 năm 2021 - 2022 sở GDĐT Quảng Nam
Đề thi chọn học sinh giỏi cấp tỉnh môn Toán 12 năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Quảng Nam mã đề 101 gồm 05 trang với 40 câu trắc nghiệm, thời gian làm bài 90 phút (không kể thời gian giao đề), kỳ thi được diễn ra vào ngày 22 tháng 03 năm 2022. Trích dẫn đề thi học sinh giỏi tỉnh Toán 12 năm 2021 – 2022 sở GD&ĐT Quảng Nam : + Có bao nhiêu số tự nhiên có bảy chữ số đôi một khác nhau, gồm ba chữ số lẻ, bốn chữ số chẵn mà trong đó có đúng một chữ số lẻ xen kẽ giữa hai chữ số chẵn? + Cho tứ diện đều ABCD có cạnh bằng 22 và tâm mặt cầu ngoại tiếp của nó là O. Mặt phẳng (P) song song với hai cạnh AB, CD và cách tâm O một khoảng bằng 1/2. Diện tích thiết diện của tứ diện ABCD cắt bởi mặt phẳng (P) bằng? + Trong không gian Oxyz, cho hai điểm A(-1;-5;2), B(3;3;-2) và đường thẳng d; hai điểm C, D thay đổi trên d sao cho CD = 63. Biết rằng khi C(a;b;c) (b < 2) thì tổng diện tích của tất cả các mặt của tứ diện ABCD đạt giá trị nhỏ nhất. Tính tổng a + b + c.
Đề thi học sinh giỏi tỉnh Toán 12 năm 2021 - 2022 sở GDĐT Bắc Ninh
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 năm học 2021 – 2022 sở Giáo dục và Đào tạo UBND tỉnh Bắc Ninh; đề thi được biên soạn theo dạng đề 100% trắc nghiệm với 50 câu hỏi và bài toán, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết mã đề 146. Trích dẫn đề thi học sinh giỏi tỉnh Toán 12 năm 2021 – 2022 sở GD&ĐT Bắc Ninh : + Trong không gian Oxyz cho điểm A 1 2 0 và mặt phẳng P x y z 2 2 3 0. Mặt phẳng 2x by cz d 0 (với b c d) đi qua điểm A, song song với trục Oy và vuông góc với P. Khi đó giá trị b c d bằng? + Cho hàm số y f x là hàm số có đạo hàm cấp hai liên tục trên. Gọi C là đồ thị của hàm số đã cho. Tiếp tuyến với đồ thị C tại các điểm có hoành độ x x 1 0 lần lượt tạo với trục hoành góc 0 0 30 45. Tiếp tuyến với đồ thị C tại các điểm có hoành độ x x 1 2 lần lượt song song với đường thẳng 1 d y x 2 1 và vuông góc với đường thẳng 2 d y x 5. + Ban đầu ta có một tam giác đều cạnh bằng 3 (hình 1). Tiếp đó ta chia mỗi cạnh của tam giác thành ba đoạn bằng nhau và thay mỗi đoạn ở giữa bằng hai đoạn bằng nó sao cho chúng tạo với đoạn bỏ đi một tam giác đều về phía bên ngoài để được hình như hình 2. Quay hình 2 xung quanh trục d ta được một khối tròn xoay có thể tích bằng?
Đề thi học sinh giỏi cấp tỉnh Toán 12 năm 2021 - 2022 sở GDĐT Bến Tre
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 12 Trung học Phổ thông (THPT) năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Bến Tre; kỳ thi được diễn ra vào sáng thứ Sáu ngày 11 tháng 03 năm 2022. Trích dẫn đề thi học sinh giỏi cấp tỉnh Toán 12 năm 2021 – 2022 sở GD&ĐT Bến Tre : + Cho hàm số y có đồ thị (C), đường thẳng d: y = -x + m (m là tham số) và hai điểm M(3;4), N(4;5). Tìm các giá trị thực của m để đường thẳng d cắt (C) tại hai điểm phân biệt A, B sao cho bốn điểm A, B, M, N lập thành tứ giác lồi AMBN có diện tích bằng 2. + Cho tam giác ABC với điểm D trên cạnh BC (D khác B, D khác C) và điểm M trên đoạn AD (M khác A, M khác D). Gọi I, K lần lượt là trung điểm của MB, MC. Tia DI cắt AB tại điểm P, tia DK cắt AC tại điểm Q. Chứng minh: PQ // IK. + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng 2a. Gọi E, F lần lượt là trung điểm của AB và BC, H là giao điểm của AF và DE. Biết SH vuông góc với mặt phẳng (ABCD) và góc giữa đường thẳng SA và mặt phẳng (ABCD) bằng 60°. Tính thể tích khối chóp S.ABCD và khoảng cách giữa hai đường thẳng SH, DF theo a.