Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HK1 Toán 11 năm 2019 - 2020 trường Dương Quảng Hàm - Hưng Yên

Sáng thứ Năm ngày 19 tháng 12 năm 2019, trường THPT Dương Quảng Hàm, tỉnh Hưng Yên tổ chức kì thi kiểm tra chất lượng học kì 1 môn Toán lớp 11 năm học 2019 – 2020. Đề thi HK1 Toán 11 năm học 2019 – 2020 trường THPT Dương Quảng Hàm – Hưng Yên (mã đề 001 và mã đề 133) gồm có 04 trang, đề được biên soạn theo dạng trắc nghiệm khách quan kết hợp tự luận, phần trắc nghiệm gồm 30 câu, chiếm 60% tổng số điểm, phần tự luận gồm 04 câu, chiếm 40% tổng số điểm, học sinh có 90 phút để hoàn thành bài thi HKI Toán 11, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi HK1 Toán 11 năm 2019 – 2020 trường Dương Quảng Hàm – Hưng Yên : + Cho tứ diện ABCD. Gọi M, N, P, Q là bốn điểm lần lượt lấy trên bốn cạnh AB, BC, CD, DA sao cho bốn điểm này không trùng với đỉnh của tứ diện và đồng phẳng. Khẳng định nào sau đây sai? A. Ba đường thẳng MQ, PN, BD đồng quy hoặc đôi một song song. B. MN cắt BD. C. Ba đường thẳng MN, PQ, AC đồng quy hoặc đôi một song song. D. Tứ diện ABCD có 6 cạnh. [ads] + Cho hình thoi ABCD tâm O. Trong các mệnh đề sau, mệnh đề nào là mệnh đề đúng? A. Phép vị tự tâm O, tỷ số k = −1 biến tam giác ABD thành tam giác CDB. B. Phép tịnh tiến theo vectơ AD biến tam giác ABD thành tam giác DCB. C. Phép quay tâm O, góc π/2 biến tam giác OBC thành tam giác OCD. D. Phép vị tự tâm O, tỷ số k = 1 biến tam giác OBC thành tam giác ODA. + Cho hình chóp S.ABCD có đáy ABCD là hình thang với AB là đáy lớn. Gọi M, N theo thứ tự là trung điểm của các cạnh SB và SC. a. Tìm giao tuyến của hai mặt phẳng (AMN) và (ABCD). b. Tìm giao điểm của đường thẳng SD với mặt phẳng (AMN).

Nguồn: toanmath.com

Đọc Sách

Đề cuối học kì 1 Toán 11 năm 2022 - 2023 trường THPT Lê Lợi - Quảng Trị
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chính thức cuối học kì 1 môn Toán 11 năm học 2022 – 2023 trường THPT Lê Lợi, tỉnh Quảng Trị; đề mã đề 001 được biên soạn theo cấu trúc 60% trắc nghiệm + 40% tự luận, thời gian làm bài 90 phút; đề có đáp án và hướng dẫn chấm mã đề 001. Trích dẫn Đề cuối học kì 1 Toán 11 năm 2022 – 2023 trường THPT Lê Lợi – Quảng Trị : + Mệnh đề nào sau đây sai? A. Mặt phẳng được hoàn toàn xác đinh khi biết nó chứa hai đường thẳng cắt nhau. B. Mặt phẳng được hoàn toàn xác đinh khi biết nó chứa hai đường thẳng song song. C. Mặt phẳng được hoàn toàn xác đinh khi biết nó đi qua ba điểm không thẳng hàng. D. Mặt phẳng được hoàn toàn xác đinh khi biết nó đi qua một điểm và chứa một đường thẳng. + Lớp 12A có 32 học sinh, trong đó có 10 học sinh giỏi, 16 học sinh khá và 6 học sinh trung bình. Cần chọn 5 học sinh vào ban cán sự lớp. Tính xác suất để: a) Chọn được 2 học sinh khá và không có học sinh trung bình. b) Chọn được 1 học sinh trung bình và nhiều nhất 2 học sinh khá. + Cho hình chóp S ABCD có đáy ABCD là hình bình hành. Giao tuyến của (SAD) và(SBC) là: A. Đường thẳng qua S và song song với AB. B. Đường thẳng SO với O là tâm của hình bình hành. C. Đường thẳng qua S và cắt AD. D. Đường thẳng qua S và song song với BC.
Đề cuối học kỳ 1 Toán 11 năm 2022 - 2023 trường THPT An Nghĩa - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề kiểm tra cuối học kỳ 1 môn Toán 11 năm học 2022 – 2023 trường THPT An Nghĩa, thành phố Hồ Chí Minh; kỳ thi được diễn ra vào ngày 26 tháng 12 năm 2022; đề thi có đáp án và thang điểm. Trích dẫn Đề cuối học kỳ 1 Toán 11 năm 2022 – 2023 trường THPT An Nghĩa – TP HCM : + Trong hộp có 3 viên bi xanh, 6 viên bi đỏ và 8 viên bi vàng. Chọn ngẫu nhiên đồng thời ra 4 viên bi. Tính xác suất các biến cố sau: a) A : “Lấy được 1 viên bi màu xanh”. b) B : “Lấy được 2 viên bi màu xanh, 1viên bi màu đỏ và 1 viên bi vàng”. c) C : “Lấy được ít nhất một viên bi màu vàng”. + Cho hình chóp S.ABCD có ABCD là hình bình hành tâm O. Gọi M là trung điểm SB và N là trung điểm BC. a) Tìm giao tuyến của hai mặt phẳng (SAC) và (SBD). b) Chứng minh MN // (SCD). c) Tìm giao tuyến của hai mặt phẳng (SBC) và (SAD). + Cho hình chóp S.ABCD có ABCD là hình thang đáy lớn AB. Gọi M là điểm thuộc miền trong tam giác SBC và I là điểm thuộc cạnh CD sao cho IC ID 2. Tìm giao điểm của đường thẳng AM và mặt phẳng (SBI).
Đề cuối học kì 1 Toán 11 năm 2022 - 2023 trường THPT Thanh Đa - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề kiểm tra cuối học kì 1 môn Toán 11 năm học 2022 – 2023 trường THPT Thanh Đa, thành phố Hồ Chí Minh; đề thi có đáp án trắc nghiệm và hướng dẫn chấm điểm tự luận. Trích dẫn Đề cuối học kì 1 Toán 11 năm 2022 – 2023 trường THPT Thanh Đa – TP HCM : + Một hộp đựng 6 bi xanh, 5 bi đỏ, 4 bi vàng. Lấy ngẫu nhiên 3 bi trong hộp. Tính xác suất lấy được 3 bi trong đó có ít nhất 1 bi đỏ. + Viết 4 số xen giữa −3 và 729 để được một cấp số nhân. + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M, N lần lượt là trung điểm của đoạn AB, CD; G là trọng tâm tam giác SCD; K là điểm nằm trên đoạn thẳng SA sao cho SK = 2/3SA. a) Tìm giao tuyến của 2 mặt phẳng (SAD) và (SBC). b) Chứng minh KG ∥ (ABCD). c) Xác định thiết diện của hình chóp S.ABCD tạo bởi mặt phẳng (MKG).
Đề học kỳ 1 Toán 11 năm 2022 - 2023 trường THPT Nguyễn Hữu Thọ - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề kiểm tra cuối học kỳ 1 môn Toán 11 năm học 2022 – 2023 trường THPT Nguyễn Hữu Thọ, thành phố Hồ Chí Minh; đề thi có đáp án và thang điểm. Trích dẫn Đề học kỳ 1 Toán 11 năm 2022 – 2023 trường THPT Nguyễn Hữu Thọ – TP HCM : + Một hộp chứa 14 quả cầu khác nhau gồm 3 quả cầu màu đỏ, 5 quả cầu màu xanh và 6 quả cầu màu vàng. Chọn ngẫu nhiên đồng thời 4 quả cầu. Tính xác suất để chọn được 4 quả cầu đủ 3 màu. + Cho hình chóp S.ABCD, có đáy ABCD là hình bình hành tâm O. Gọi M, N, P lần lượt là trung điểm của BC, CD, SD. a. Tìm giao tuyến của hai mặt phẳng (SAD) và (SBC). b. Chứng minh MN // (SBD). c. Tìm giao điểm I của BP với mặt phẳng (SAC). d. Mặt phẳng (α) qua M song song với CD và SB. Tìm thiết diện của mp(α) và hình chóp. + Đề thi môn Toán THPT Quốc Gia gồm 50 câu hỏi trắc nghiệm khách quan, mỗi câu hỏi có 4 phương án trả lời trong đó chỉ có 1 phương án đúng. Mỗi câu trả lời đúng học sinh được 0,2 điểm, mỗi câu trả lời sai 0 điểm. Bạn Nam trả lời đúng 30 câu và chọn ngẫu nhiên 20 câu. Tính xác suất để bạn Nam được 9 điểm.