Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi KSCL Toán 12 lần 2 năm 2018 - 2019 trường Hậu Lộc 1 - Thanh Hóa

giới thiệu đến thầy, cô và các em học sinh khối 12 đề thi KSCL Toán 12 lần 2 năm học 2018 – 2019 trường THPT Hậu Lộc 1 – Thanh Hóa, đây là đề thi thử THPT Quốc gia 2019 môn Toán để giúp học sinh thử sức trong quá trình chuẩn bị cho kỳ thi chính thức THPT Quốc gia môn Toán năm học 2018 – 2019 dự kiến diễn ra vào cuối tháng 06 năm 2019. Đề thi KSCL Toán 12 lần 2 năm học 2018 – 2019 trường THPT Hậu Lộc 1 – Thanh Hóa gồm 4 mã đề, đề được biên soạn bám sát cấu trúc đề tham khảo THPT Quốc gia môn Toán năm 2019 mà Bộ Giáo dục và Đào tạo đã từng công bố, đề thi có đáp án đầy đủ các mã đề 152, 186, 220, 254. [ads] Trích dẫn đề thi KSCL Toán 12 lần 2 năm 2018 – 2019 trường Hậu Lộc 1 – Thanh Hóa : + Để đủ tiền mua nhà, anh An vay ngân hàng 500 triệu theo phương thức trả góp với lãi suất 0,85 % / tháng. Nếu sau mỗi tháng, kể từ thời điểm vay, anh An trả nợ cho ngân hàng số tiền cố định là 10 triệu đồng bao gồm cả tiền lãi vay và tiền gốc. Biết phương thức trả lãi và gốc không thay đổi trong suốt quá trình anh An trả nợ. Hỏi sau bao nhiêu tháng thì anh trả hết nợ ngân hàng? (tháng cuối có thể trả dưới 10 triệu đồng). + Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(a;0;0), B(0;b;0), C(0;0;c) với a, b, c là những số dương thay đổi thỏa mãn a^2 + 4b^2 + 16c^2 = 49. Tính tổng S = a^2 + b^2 + c^2 khi khoảng cách từ O đến mặt phẳng (ABC) đạt giá trị lớn nhất. + Cho tam giác đều ABC có đỉnh A(5;50 nội tiếp đường tròn tâm I đường kính AA’, M là trung điểm BC. Khi quay tam giác ABM cùng với nửa đường tròn đường kính AA’ xung quanh đường thẳng AM (như hình vẽ minh họa), ta được khối nón và khối cầu có thể tích lần lượt là V1 và V2. Tỷ số V1/V2 bằng?

Nguồn: toanmath.com

Đọc Sách

Đề kiểm tra khảo sát Toán 12 năm 2022 - 2023 sở GDĐT Bình Thuận
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề kiểm tra khảo sát chất lượng học sinh môn Toán 12 năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Bình Thuận; đề thi hình thức trắc nghiệm, gồm 04 trang với 50 câu hỏi và bài toán, thời gian 90 phút (không kể thời gian phát đề). Trích dẫn Đề kiểm tra khảo sát Toán 12 năm 2022 – 2023 sở GD&ĐT Bình Thuận : + Trong không gian Oxyz, cho mặt cầu (S): (x − 2)2 + (y + 3)2 + (z − 3)2 = 25 và đường thẳng d: x − 1 / 4 = y + 3 / −2 = z − 1 / 1. Có bao nhiêu điểm M thuộc trục tung, với tung độ là số nguyên, mà từ M kẻ được đến (S) đúng hai tiếp tuyến cùng vuông góc với d? + Một hộp chứa 15 quả cầu gồm 4 quả cầu màu đỏ, 5 quả cầu màu xanh và 6 quả cầu màu vàng. Các quả cầu đôi một khác nhau. Lấy ngẫu nhiên đồng thời 8 quả từ hộp đó, xác suất để số quả cầu còn lại có đủ ba màu bằng? + Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, SA vuông góc với đáy và góc giữa mặt phẳng (SBC) với mặt phẳng (ABC) bằng 60◦. Gọi M, N lần lượt là trung điểm của SA, SB. Thể tích khối chóp S.MNC bằng?
Đề kiểm tra chất lượng Toán 12 năm 2022 - 2023 trường THPT chuyên Thái Bình
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề kiểm tra chất lượng cuối năm môn Toán 12 năm học 2022 – 2023 trường THPT chuyên Thái Bình, tỉnh Thái Bình (mã đề 132); kỳ thi được diễn ra vào Chủ Nhật ngày 07 tháng 05 năm 2023. Trích dẫn Đề kiểm tra chất lượng Toán 12 năm 2022 – 2023 trường THPT chuyên Thái Bình : + Một hộp chứa 25 quả cầu gồm 10 quả màu đỏ được đánh số từ 1 đến 10 và 15 quả màu xanh được đánh số từ 1 đến 15. Lấy ngẫu nhiên hai quả từ hộp đó, xác suất để lấy được hai quả khác màu đồng thời tích hai số ghi trên chúng là số chẵn bằng? + Cho khối nón có đỉnh S đáy là hình tròn (O;R), chiều cao bằng 8 và thể tích bằng 800/3. Gọi A và B là hai điểm thuộc đường tròn đáy sao cho AB = 12. Gọi C, D lần lượt là các điểm đối xứng với A, B qua O. Khoảng cách giữa hai đường thẳng CD và SA bằng? + Trong không gian Oxyz, cho A(0;0;10), B(3;4;6). Xét các điểm M thay đổi sao cho MB luôn vuông góc OA và tam giác OAM có diện tích bằng 15. Giá trị lớn nhất của độ dài đoạn thẳng MB thuộc khoảng nào dưới đây?
Đề khảo sát môn Toán thi tốt nghiệp THPT 2023 lần 2 sở GDĐT Vĩnh Phúc
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi khảo sát kiến thức môn Toán 12 chuẩn bị cho kỳ thi tốt nghiệp THPT năm học 2022 – 2023 lần 2 sở Giáo dục và Đào tạo tỉnh Vĩnh Phúc (mã đề 211); kỳ thi được diễn ra vào thứ Sáu ngày 05 tháng 05 năm 2023; đề thi có đáp án trắc nghiệm tất cả các mã đề. Trích dẫn đề khảo sát môn Toán thi tốt nghiệp THPT 2023 lần 2 sở GD&ĐT Vĩnh Phúc : + Trong không gian Oxyz, cho điểm A 1 2 3 đường thẳng 1 3 2 4 3 4 x t d y t z t và mặt phẳng P x y z 2 2 9 0. Gọi B là giao điểm của đường thẳng d và mặt phẳng P điểm M thay đổi trong P sao cho M luôn nhìn đoạn AB dưới một góc bằng 0 90. Khi độ dài MB lớn nhất, đường thẳng MB đi qua điểm nào trong các điểm sau? + Cho hàm số 1 3 2 2 2 3 2 2 3 y x mx m m x có đồ thị C. Có bao nhiêu giá trị nguyên của tham số m để trên C luôn tồn tại hai điểm A B sao cho tiếp tuyến của C tại A và B vuông góc với đường thẳng x y 2 10 0. + Trong không gian Oxyz, cho mặt cầu 2 2 2 S x y z x y z 4 2 4 5 0. Viết phương trình mặt phẳng P vuông góc với đường thẳng 5 1 2 3 1 2 x y z d, đồng thời cắt S theo giao tuyến là một đường tròn có diện tích bằng 4.
Đề khảo sát chất lượng Toán 12 lần 2 năm 2022 - 2023 sở GDĐT Thanh Hóa
Nhằm chuẩn bị cho kỳ thi tốt nghiệp THPT 2023, sáng thứ Ba ngày 25 tháng 04 năm 2023, sở Giáo dục và Đào tạo tỉnh Thanh Hóa tổ chức kỳ thi khảo sát chất lượng học sinh lớp 12 lần 2 năm học 2022 – 2023. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng môn Toán 12 lần 2 năm học 2022 – 2023 sở GD&ĐT Thanh Hóa. Trích dẫn Đề khảo sát chất lượng Toán 12 lần 2 năm 2022 – 2023 sở GD&ĐT Thanh Hóa : + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a = 2 cm, đường thẳng SA vuông góc với mặt phẳng đáy (tham khảo hình vẽ). Tính khoảng cách từ trọng tâm G của tam giác SAB đến mặt phẳng (SAC). + Trong không gian Oxyz, cho bốn điểm A(2;1;4), B(2;5;4), C(-5/2;5;-1), D(-3;1;-4). Các điểm M và N thỏa mãn MA2 + 3MB2 = 48 và ND2 = (NC + BC).ND. Tìm độ dài ngắn nhất của đoạn thẳng MN. + Cho hình nón (N) có đỉnh S, chiều cao h = 2. Mặt phẳng (P) qua đỉnh S cắt hình nón (N) theo thiết diện là tam giác đều. Khoảng cách từ tâm đáy hình nón đến mặt phẳng (P) bằng 3. Thể tích khối nón giới hạn bởi hình nón (N) bằng?