Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán 11 THPTQG 2018 trường Yên Phong 1 - Bắc Ninh lần 2

Đề thi thử Toán 11 THPTQG 2018 trường Yên Phong 1 – Bắc Ninh lần 2 mã đề 178 gồm 6 trang với 50 câu hỏi trắc nghiệm khách quan, thời gian làm bài 90 phút, đề thi có đáp án . Theo định hướng của Bộ GD và ĐT, đề THPT Quốc gia 2018 môn Toán sẽ bao gồm nội dung Toán 11, và đến năm 2019 sẽ có cả chương trình Toán 10, 11, 12, do đó, ở nhiều trường THPT đã tổ chức các kỳ thi thử Toán sớm dành cho học sinh khối 10 và 11. Trích dẫn đề thi thử Toán 11 THPTQG năm 2017 – 2018 : + Cho hình chóp S.ABC có các cạnh bên cùng tạo với đáy các góc bằng nhau. Khi đó hình chiếu vuông góc của điểm S trên mặt phẳng (ABC) là? A. Trực tâm tam giác ABC. B. Tâm đường tròn nội tiếp tam giác ABC. C. Tâm đường tròn ngoại tiếp tam giác ABC. D. Trọng tâm tam giác ABC. [ads] + Tìm mệnh đề đúng trong các mệnh đề sau: A. Nếu một đường thẳng song song với một trong hai mặt phẳng song song thì nó sóng song với mặt phẳng còn lại. B. Nếu một đường thẳng nằm trên một trong hai mặt phẳng song song thì nó song song với mọi đường thẳng nằm trong mặt phẳng còn lại. C. Hai mặt phẳng phân biệt cùng song song với một đường thẳng thì song song với nhau. D. Hai mặt phẳng phân biệt cùng song song với một mặt phẳng thì song song với nhau. + Cho đường tròn (O; R). Xét các mệnh đề dưới đây là: (I): Phép tịnh tiến theo véc tơ biến (O; R) thành chính nó. (II): Có hai phép vị tự biến (O; R) thành chính nó. (III): Với 0 < α < 2π. Nếu Q(O; α)  biến (O; R) thành chính nó thì có duy nhất 1 góc α thỏa mãn là α = π. (IV): Phép đồng dạng luôn biến đường tròn (O; R) thành chính nó. Hỏi có bao nhiêu mệnh đề đúng?

Nguồn: toanmath.com

Đọc Sách

Đề thi KSCL Toán 11 lần 1 năm 2020 - 2021 trường THPT Liễn Sơn - Vĩnh Phúc
Đề thi KSCL Toán 11 lần 1 năm học 2020 – 2021 trường THPT Liễn Sơn – Vĩnh Phúc mã đề 132 gồm 02 trang với 16 câu trắc nghiệm và 06 câu tự luận, thời gian làm bài 90 phút (không kể thời gian giáo viên coi thi phát đề), đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi KSCL Toán 11 lần 1 năm 2020 – 2021 trường THPT Liễn Sơn – Vĩnh Phúc : + Một trường THPT tổ chức trao thưởng cho học sinh nghèo học giỏi, nhà trường chuẩn bị các phần thưởng là 7 quyển sổ, 8 cặp sách và 9 hộp bút (các sản phẩm cùng loại là giống nhau). Nhà trường chọn 12 bạn học sinh để trao phần thưởng sao cho mỗi học sinh đều nhận được hai phần thưởng khác loại. Trong số đó có hai bạn Hoà và Bình. Tính xác suất để hai bạn Hoà và Bình nhận được phần thưởng giống nhau. + Cho hình chóp S.ABCD với đáy là hình thang ABCD (AB > CD và AB // CD). Gọi E và F lần lượt là trung điểm của các cạnh SB và SC. a. Tìm giao tuyến của (SAC) và (SBD). b. Tìm giao điểm K của SD với (AEF). + Trong mặt phẳng Oxy cho đường tròn (C) có phương trình (x – 1)^2 + (y – 2)^2 = 4. Hỏi phép dời hình có được bằng cách thực hiện liên tiếp phép tịnh tiến theo vectơ v = (2;-2) và phép quay tâm O góc quay 2π biến đường tròn (C) thành đường tròn nào trong các đường tròn có phương trình sau?
Đề thi chuyên đề Toán 11 lần 1 năm 2020 - 2021 trường THPT Vĩnh Yên - Vĩnh Phúc
Đề thi chuyên đề Toán 11 lần 1 năm 2020 – 2021 trường THPT Vĩnh Yên – Vĩnh Phúc mã đề 136 gồm 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án. Trích dẫn đề thi chuyên đề Toán 11 lần 1 năm 2020 – 2021 trường THPT Vĩnh Yên – Vĩnh Phúc : + Đường tròn sẽ không thay đổi bán kính khi ta thực hiện liên tiếp các phép nào sau đây: A. Thực hiện phép dời hình bất kỳ rồi thực hiện liên tiếp phép vị tự tỉ số k = -1. B. Thực hiện phép quay rồi thực hiện liên tiếp phép đồng dạng bất kỳ. C. Thực hiện phép vị tự tỉ số k = -1 rồi thực hiện liên tiếp phép đồng dạng tỉ số k = 2. D. Thực hiện phép đồng dạng tỉ số k = 2 rồi thực hiện liên tiếp phép dời hình bất kỳ. + Trong mặt phẳng tọa độ Oxy, cho hai đường tròn (C): (x + m)^2 + (y – 2)^2 = 5 và (C’): x^2 + y^2 + 2(m – 2)y – 6x + 12 + m^2 = 0. Vectơ v nào dưới đây là vectơ của phép tịnh tiến biến (C) thành (C′)? + Cho hình vuông ABCD tâm I. Gọi M, N lần lượt là trung điểm AD, DC. Phép tịnh tiến theo vectơ nào sau đây biến ∆AMI thành ∆INC.
Đề khảo sát chất lượng lần 1 Toán 11 năm 2020 - 2021 trường Quế Võ 1 - Bắc Ninh
Đề khảo sát chất lượng lần 1 Toán 11 năm 2020 – 2021 trường Quế Võ 1 – Bắc Ninh mã đề 110 gồm 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án mã đề 110, 232, 354, 476, 598, 610, 792, 874, 956, 138, 210, 392. Trích dẫn đề khảo sát chất lượng lần 1 Toán 11 năm 2020 – 2021 trường Quế Võ 1 – Bắc Ninh : + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi d là giao tuyến của hai mặt phẳng (SAD) và (SBC). Khẳng định nào sau đây đúng? A. d qua S và song song với BC. B. d qua S và song song với DC. C. d qua S và song song với AB. D. d qua S và song song với BD. + Cho một bảng ô vuông 3 x 3. Điền ngẫu nhiên các số 1, 2, 3, 4, 5, 6, 7, 8, 9 vào bảng trên (mỗi ô chỉ điền một số). Gọi A là biến cố “mỗi hàng, mỗi cột bất kì đều có ít nhất một số lẻ”. Xác suất của biến cố A bằng? + Cho khai triển nhị thức P(x) = (1 + x)^6. Xét các khẳng định sau: (I) Khai triển P(x) gồm có 7 số hạng. (II) Số hạng thứ 2 của khai triển P(x) là 6x. (III) Hệ số của x^5 trong khai triển P(x) là 5. (IV) Số hạng chính giữa của khai triển P(x) là số hạng thứ 3. Số khẳng định đúng?
Đề khảo sát chất lượng Toán 11 năm 2020 - 2021 trường THPT Yên Mỹ - Hưng Yên
Đề khảo sát chất lượng Toán 11 năm 2020 – 2021 trường THPT Yên Mỹ – Hưng Yên mã đề 291 gồm 05 trang với 50 câu hỏi và bài toán dạng trắc nghiệm, thời gian học sinh làm bài thi là 90 phút. Trích dẫn đề khảo sát chất lượng Toán 11 năm 2020 – 2021 trường THPT Yên Mỹ – Hưng Yên : + Khẳng định nào sai: A. Phép quay biến đường thẳng thành đường thẳng song song với nó. B. Phép tịnh tiến biến tam giác thành tam giác bằng nó. C. Phép tịnh tiến biến đoạn thẳng thành đoạn thẳng bằng nó. D. Phép quay biến đường tròn thành đường tròn có cùng bán kính. + Cho hình chóp S.ABCD có đáy ABCD không là hình thang. Khi đó giao tuyến của hai mặt phẳng (SAB) và (SCD) là: A. Đường thẳng SE với E là giao điểm của AD và BC. B. Đường thẳng đi qua S và song song BC. C. Đường thẳng SI với I là giao điểm của AB và CD. D. Đường thẳng SO với O là giao điểm của AC và BD. + Để lắp đường dây cao thế từ vị trí A đến vị trí B phải tránh một ngọn núi, do đó người ta phải nối thẳng đường dây từ vị trí A đến vị trí C dài 10km, rồi nối từ vị trí C đến vị trí B dài 8km. Biết góc tạo bởi 2 đoạn dây AC và CB là 85 độ. Hỏi so với việc nối thẳng từ A đến B phải tốn thêm khoảng bao nhiêu mét dây?