Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phương pháp giải bài toán lãi suất ngân hàng - Mẫn Ngọc Quang

Tài liệu gồm 18 trang hướng dẫn phương pháp giải bài toán lãi suất ngân hàng và các bài tập trắc nghiệm có lời giải chi tiết. Công thức 1: (Dành cho gửi tiền một lần) Gửi vào ngân hàng số tiền là a đồng, với lãi suất hàng tháng là r% trong n tháng. Tính cả vốn lẫn lãi T sau n tháng ? Công thức 2: (Dành cho gửi tiền hàng tháng) Một người, hàng tháng gửi vào ngân hàng số tiền là a (đồng). Biết lãi suất hàng tháng là r%. Hỏi sau n tháng, người ấy có bao nhiêu tiền ? Công thức 3: Dành cho bài toán trả góp: Gọi số tiền vay là N, lãi suất là x, n là số tháng phải trả, A là số tiền phải trả vào hàng tháng để sau n tháng là hết nợ. Công thức 4: Rút sổ tiết kiệm theo định kỳ: Thực ra bài toán này giống bài 3, nhưng mình lại hiểu là ngân hàng nợ tiền của người cho vay. Trái lại so với vay trả góp. Công thức 5: Gửi tiền theo kỳ hạn 3 tháng, 6 tháng, 1 năm … [ads]

Nguồn: toanmath.com

Đọc Sách

Chuyên đề trắc nghiệm phương trình mũ
Tài liệu gồm 26 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề phương trình mũ, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 2. I. LÝ THUYẾT TRỌNG TÂM 1. Phương trình mũ cơ bản. 2. Các phương pháp giải phương trình mũ. II. CÁC DẠNG TOÁN TRỌNG TÂM VÀ PHƯƠNG PHÁP GIẢI Phương pháp 1. Đưa về cùng cơ số. Phương pháp 2. Lấy logarit hai vế phương trình (logarit hóa). Phương pháp 3. Đặt ẩn phụ. Phương pháp 4. Sử dụng tính đơn điệu của hàm số, phương pháp phân tích nhân tử, phương pháp đánh giá. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Chuyên đề trắc nghiệm hàm số lũy thừa, hàm số mũ và hàm số logarit
Tài liệu gồm 52 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề hàm số lũy thừa, hàm số mũ và hàm số logarit, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 2. I. HÀM SỐ LŨY THỪA. 1. Định nghĩa. 2. Tập xác định. 3. Đạo hàm. 4. Tính chất của hàm số lũy thừa trên khoảng (0;+∞). 5. Đồ thị hàm số lũy thừa y = x^a trên khoảng (0;+∞). II. HÀM SỐ MŨ. 1. Định nghĩa. 2. Tập xác định. 3. Đạo hàm. 4. Đồ thị hàm số y = a^x. III. HÀM SỐ LOGARIT. 1. Định nghĩa. 2. Tập xác định. 3. Đạo hàm. 4. Tính chất. 5. Đồ thị hàm số y = loga x. CÁC DẠNG TOÁN: + Dạng 1. Tìm tập xác định của hàm số lũy thừa, hàm số mũ và hàm số logarit. + Dạng 2. Tính đạo hàm của hàm số lũy thừa, hàm số mũ và hàm số logarit. + Dạng 3. Tính đơn điệu và cực trị của hàm số lũy thừa, hàm số mũ và hàm số logarit. + Dạng 4. Giá trị lớn nhất và nhỏ nhất hàm số lũy thừa, hàm số mũ và hàm số logarit. + Dạng 5. Đồ thị hàm số lũy thừa, hàm số mũ và hàm số logarit. + Dạng 6. Một số bài toán nâng cao về hàm số lũy thừa, hàm số mũ và hàm số logarit. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Chuyên đề trắc nghiệm công thức logarit
Tài liệu gồm 28 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề công thức logarit, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 2. 1. Định nghĩa. 2. Các công thức Logarit. 3. Logarit thập phân, logarit tự nhiên. DẠNG 1. SỬ DỤNG CÔNG THỨC LOGARIT. DẠNG 2: BIỂU DIỄN BIỂU THỨC LOGARIT THEO BIỂU THỨC CHO TRƯỚC. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Chuyên đề trắc nghiệm công thức lũy thừa
Tài liệu gồm 12 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề công thức lũy thừa, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 2. I. KHÁI NIỆM LŨY THỪA 1. Lũy thừa với số mũ nguyên. 2. Căn bậc n. 3. Lũy thừa với số mũ hữu tỷ. 4. Lũy thừa với số mũ vô tỷ. II. TÍNH CHẤT CỦA LŨY THỪA VỚI SỐ MŨ THỰC Tính chất 1. Tính chất 2: Tính đồng biến, nghịch biến. Tính chất 3: So sánh lũy thừa khác cơ số. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.