Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn học sinh giỏi Toán 11 năm 2023 - 2024 sở GDĐT Nam Định

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi môn Toán 11 năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Nam Định; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi chọn học sinh giỏi Toán 11 năm 2023 – 2024 sở GD&ĐT Nam Định : + Có hai chung cư cao tầng xây cạnh nhau với khoảng cách giữa chúng là HK m 25. Để đảm bảo an ninh, trên nóc chung cư thứ hai người ta lắp camera ở vị trí C. Gọi A B lần lượt là vị trí thấp nhất và cao nhất trên chung cư thứ nhất mà camera có thể quan sát được (tham khảo hình vẽ). Hãy tính số đo góc ACB (phạm vi camera có thể quan sát được ở chung cư thứ nhất) biết rằng chiều cao của chung cư thứ hai là CK m AH m BH m 37 4 26 (làm tròn kết quả đến hàng đơn vị theo đơn vị độ). + Phòng chăm sóc khách hàng của công ty A làm việc từ 8h00 sáng đến 20h00 mỗi ngày. Nhân viên trực tổng đài làm việc theo 2 ca, mỗi ca 8 tiếng, ca I từ 8h00 đến 16h00 và ca II từ 12h00 đến 20h00. Tiền lương của nhân viên được tính theo giờ (bảng dưới đây): Khoảng thời gian làm việc Tiền lương/giờ 8h00 – 16h00 32 000 đồng 12h00 – 20h00 30 000 đồng. Để chăm sóc khách hàng tốt nhất thì cần tối thiểu 2 nhân viên trong khoảng từ 12h00 – 20h00, tối thiểu 10 nhân viên trong giờ cao điểm từ 12h00 – 16h00 và không quá 9 nhân viên trong khoảng từ 8h00 – 16h00. Do lượng khách hàng trong khoảng 8h00 – 16h00 thường đông hơn nên phòng chăm sóc khách hàng cần số nhân viên ca I ít nhất phải gấp 1,5 lần số nhân viên của ca II. Em hãy giúp công ty A chỉ ra cách huy động số lượng nhân viên cho mỗi ca sao cho chi phí tiền lương mỗi ngày là ít nhất. + Một hộp có 25 chiếc thẻ cùng loại được đánh số từ 1 đến 25. Hai bạn An và Bình chơi trò chơi rút thẻ trong hộp như sau: hai bạn lần lượt rút thẻ, mỗi lượt rút ngẫu nhiên một thẻ rồi ghi lại số trên thẻ vừa rút sau đó trả lại thẻ vào hộp. An sẽ thắng nếu rút được thẻ ghi số chia hết cho 6, Bình sẽ thắng nếu rút được thẻ ghi số chia hết cho 5. Giả sử An chơi trước, tính xác suất để Bình thắng?

Nguồn: toanmath.com

Đọc Sách

Đề thi chọn HSG tỉnh Toán 11 năm học 2017 - 2018 sở GD và ĐT Hà Tĩnh
Đề thi chọn HSG tỉnh Toán 11 năm học 2017 – 2018 sở GD và ĐT Hà Tĩnh gồm 01 trang với 5 bài toán tự luận, thời gian làm bài 180 phút, đề được dành cho học sinh lớp 10 và 11 khối THPT, đề thi có lời giải chi tiết . Trích dẫn đề thi chọn HSG tỉnh Toán 11 sở Hà Tĩnh 2017 – 2018 : + Năm 2018 là năm kỷ niệm 50 năm Chiến thắng Đồng Lộc (24/7/1968-24/7/2018), trường học X cho học sinh trong các đội tuyển học sinh giỏi Toán khối 10, khối 11 của trường về tham quan khu di tích Ngã ba Đồng lộc. Biết rằng đội tuyển Toán khối 10 có 4 em gồm 2 nam, 2 nữ; đội tuyển Toán khối 11 có 4 em gồm 3 nam, 1 nữ. Trong đợt tham quan thứ nhất, trường chọn 3 học sinh với yêu cầu có cả đội tuyển 10, cả đội tuyển 11; có cả nam và cả nữ. Hỏi có bao nhiêu cách chọn. [ads] + Cho hình chóp S.ABC có đáy là tam giác đều cạnh 2a, H là trung điểm của AB, SH ⊥ (ABC), SH = x. Gọi M là hình chiếu vuông góc của H lên đường thẳng AC và N là điểm thỏa mãn vtMH = vtHN. a) Khi x = a√3/2, chứng minh đường thẳng SN vuông góc với mặt phẳng (SAC). b) Tìm x theo a để góc giữa đường thẳng SB và mặt phẳng (SAC) bằng 45 độ.
Đề thi chọn HSG tỉnh Toán 11 năm 2017 2018 sở GDĐT Quảng Bình
Ngày 22 tháng 03 năm 2018, sở Giáo dục và Đào tạo tỉnh Quảng Bình tổ chức kỳ thi chọn học sinh giỏi tỉnh môn Toán 11 THPT năm học 2017 – 2018. Đề thi chọn HSG tỉnh Toán 11 năm 2017 – 2018 sở GD&ĐT Quảng Bình gồm 01 trang với 05 bài toán, thời gian làm bài 180 phút, đề thi có hướng dẫn chấm. Trích dẫn đề thi chọn HSG tỉnh Toán 11 năm 2017 – 2018 sở GD&ĐT Quảng Bình : + Một hộp đựng chín quả cầu được đánh số từ 1 đến 9. Hỏi phải lấy ra ít nhất bao nhiêu quả cầu để xác suất có ít nhất một quả cầu ghi số chia hết cho 4 phải lớn hơn 5/6. [ads] + Tìm tất cả các số nguyên dương n sao cho 3^2n + 3n^2 + 7 là một số chính phương. + Cho hình hộp ABCD.A’B’C’D’. Gọi G là trọng tâm của tam giác BC’D. a. Xác định thiết diện của hình hộp ABCD.A’B’C’D’ khi cắt bởi mặt phẳng (ABG). Thiết diện đó là hình gì? b. Hai điểm M, N lần lượt thuộc hai đoạn thẳng AD, A’C sao cho MN song song với mặt phẳng (BC’D), biết AM = 1/4.AD. Tính tỉ số CN/CA’.
Đề thi chọn HSG tỉnh Toán 11 THPT năm 2017 - 2018 sở GD và ĐT Nghệ An (Bảng A)
Đề thi chọn HSG tỉnh Toán 11 THPT năm 2017 – 2018 sở GD và ĐT Nghệ An (Bảng A) gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 150 phút (không kể thời gian giao đề), kỳ thi được tổ chức vào chiều ngày 16 tháng 03 năm 2018, đề thi HSG Toán 11 có lời giải chi tiết . Trích dẫn đề thi chọn HSG tỉnh Toán 11 THPT : + Trong mặt phẳng với hệ tọa độ Oxy, cho hình bình hành ABCD. Hình chiếu vuông góc của điểm D lên các đường thẳng AB, BC lần lượt là M(-2; 2), N(2; -2); đường thẳng BD có phương trình 3x – 5y + 1 = 0. Tìm tọa độ điểm A. + Một hộp chứa 17 quả cầu đánh số từ 1 đến 17. Lấy ngẫu nhiên đồng thời 3 quả cầu. Tính xác suất sao cho tổng các số ghi trên 3 quả cầu đó là một số chẵn. [ads] + Cho hình chóp S.ABCD, có đáy là hình thoi cạnh a, SA = SB = SC = a. Đặt SD = x (0 < x < a√3). a) Tính góc giữa đường thẳng SB và mặt phẳng (ABCD), biết rằng x = a. b) Tìm x theo a để tích AC.SD đạt giá trị lớn nhất.
Đề thi Olympic Toán 11 năm 2017 - 2018 cụm trường Thanh Xuân Cầu Giấy - Hà Nội
Đề thi Olympic Toán 11 năm 2017 – 2018 cụm trường Thanh Xuân & Cầu Giấy – Hà Nội gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 150 phút, đề thi nhằm tuyển chọn các em học sinh giỏi môn Toán khối 11, đề thi có lời giải chi tiết . Trích dẫn đề thi Olympic Toán 11 năm 2017 – 2018 : + Một đoàn tàu có 6 toa ở sân ga, trên sân ga có 6 hành khách chuẩn bị lên tàu, mỗi người độc lập với nhau và chọn toa tàu một cách ngẫu nhiên. a. Hỏi có bao nhiêu cách xếp 6 hành khách lên các toa tàu đó sao cho 6 người cùng lên một toa hoặc mỗi người lên một toa khác nhau? b. Tính xác suất sao cho một toa có 3 hành khách, một toa có 2 hành khách, 1 toa có 1 hành khách, còn 3 toa còn lại không có ai lên. [ads] + Biết rằng các số x, 2y – x, x + 2y theo thứ tự lập thành cấp số cộng. Đồng thời các số 1, y – 1, x + 2y – 1 theo thứ tự lập thành cấp số nhân. Hãy tìm x, y. + Xét khai triển (x + 1/x)^n (x ≠ 0, n ≥ 3, n ∈ N*). Biết tích của số hạng thứ tư tính từ phải sang và số hạng thứ tư kể từ trái sang bằng 14400. Tìm n.