Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG Toán 10 năm 2022 - 2023 trường THPT Trần Phú - Vĩnh Phúc

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chọn học sinh giỏi cấp trường môn Toán 10 năm học 2022 – 2023 trường THPT Trần Phú, tỉnh Vĩnh Phúc; đề thi mã đề 101 hình thức trắc nghiệm 100% với 50 câu hỏi và bài toán, thời gian làm bài 90 phút, không kể thời gian giao đề; đề thi có đáp án. Trích dẫn Đề thi HSG Toán 10 năm 2022 – 2023 trường THPT Trần Phú – Vĩnh Phúc : + Một công ti bắt đầu sản xuất và bán một loại máy tính từ năm 2016. Số lượng loại máy tính đó bán được trong năm 2016 và năm 2022 lần lượt là 195 nghìn và 177 nghìn chiếc. Theo nghiên cứu dự báo thị trường của công ti, trong khoảng 15 năm kể từ năm 2016, số lượng máy tính loại đó bán được mỗi năm có thể được mô tả bởi một hàm số bậc hai. Giả sử t là thời gian tính từ năm 2016. Số lượng loại máy tính đó bán được trong năm 2016 và năm 2022 lần lượt được biểu diễn bởi các điểm (0;195) và (6;177). Giả sử điểm (6;177) là đỉnh đồ thị của hàm số bậc hai này. Hỏi trong các năm từ 2016 đến hết năm 2027 có tất cả bao nhiêu năm công ti đó bán được vượt mức 179 nghìn chiếc máy tính? + Nhằm thu hút học viên, một trung tâm thông báo học phí của một khóa học như sau: 14 học viên đầu tiên sẽ có phí là 24 USD/người. Nếu có nhiều hơn 14 người đăng kí thì cứ có thêm 1 người, học phí sẽ giảm 1 USD/ người cho toàn bộ học viên. Biết rằng chi phí vận hành của khóa học là 136 USD. Gọi x là số học viên tính từ học viên thứ 15 trở lên. x nằm trong khoảng bao nhiêu thì trung tâm có lãi? + Lớp 12A có 15 học sinh giỏi Toán, 10 học sinh giỏi Văn, 8 học sinh giỏi Anh trong đó có 5 học sinh giỏi cả Toán và Anh, 6 học sinh giỏi cả Toán và Văn, 7 học sinh giỏi cả Văn và Anh, 4 học sinh giỏi cả ba môn. Tính số học sinh giỏi ít nhất hai môn của lớp 12A?

Nguồn: toanmath.com

Đọc Sách

Đề thi HSG Toán 10 năm 2022 - 2023 lần 1 trường chuyên KHTN - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chọn học sinh giỏi môn Toán lớp 10 năm học 2022 – 2023 lần 1 trường THPT chuyên KHTN, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 08 tháng 08 năm 2022. Trích dẫn đề thi HSG Toán 10 năm 2022 – 2023 lần 1 trường chuyên KHTN – Hà Nội : + Tìm tất cả các số nguyên n sao cho 5n – 1, 55n + 11 là hai số chính phương và 55n2 – 149 là số nguyên tố. + Xét 100 số nguyên a1, a2, …, a99, a100 có tính chất sau: a1 = a100 = 0 và với mỗi số nguyên dương 2 < i < 99 ta đều có ai > (ai-1 + ai+1)/2. Tìm giá trị nhỏ nhất có thể có của a23? + Cho hình chữ nhật ABCD nội tiếp đường tròn (O). Điểm P thuộc cung nhỏ CD của (O). M là trung điểm CD. Lấy Q thuộc đường thẳng AD sao cho PQ và PM vuông góc. Trên BQ lấy R sao cho PR vuông góc với CD. a) Chứng minh rằng PB và OM cắt nhau trên đường tròn đường kính QM. b) Chứng minh rằng tứ giác PCRD và tam giác RAB có diện tích bằng nhau. c) Hỏi có tất cả bao nhiêu vị trí của P để RA vuông góc RB? Hãy giải thích.
Đề thi học sinh giỏi Toán 10 năm 2021 - 2022 cụm trường THPT - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chọn học sinh giỏi cấp cụm môn Toán 10 năm học 2021 – 2022 cụm trường THPT trực thuộc sở Giáo dục và Đào tạo Hà Nội.
Đề thi chọn học sinh giỏi Toán 10 năm 2021 - 2022 sở GDĐT Hà Nam
Đề thi chọn học sinh giỏi môn Toán 10 năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Hà Nam gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút. Trích dẫn đề thi chọn học sinh giỏi Toán 10 năm 2021 – 2022 sở GD&ĐT Hà Nam : + Cho parabol 2 P y x m x m 2 2 1 và đường thẳng 2 d y m x m m 1 5 3 (với m là tham số). Biết đường thẳng d cắt đồ thị P tại hai điểm phân biệt A B. Tìm điều kiện của m để AB 26. + Cho phương trình 2 x b x c 2 1 0 với b c. Biết phương trình có hai nghiệm dương 1 2 x x thỏa mãn 1 2 x x 4. a) Chứng minh 2 2 4 2 b b c b) Tìm giá trị lớn nhất của biểu thức 2 P b c b b b 6 3 1 2022. + Cho ABC nội tiếp đường tròn O R và có trọng tâm là G. Các đường thẳng AG BG CG theo thứ tự cắt đường tròn O tại điểm thứ hai là M N P. Biết 1 1 1 2 sin sin sin R.
Đề thi học sinh giỏi tỉnh Toán 10 năm 2021 - 2022 sở GDĐT Hà Tĩnh
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 10 năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Hà Tĩnh; kỳ thi được diễn ra vào ngày 15 tháng 03 năm 2022. Trích dẫn đề thi học sinh giỏi tỉnh Toán 10 năm 2021 – 2022 sở GD&ĐT Hà Tĩnh: + Trong hệ tọa độ Oxy, cho tam giác ABC vuông tại A, gốc tọa độ O là trung điểm của cạnh BC. Đường phân giác trong góc B có phương trình (d): x + 2y – 5 = 0, đường thẳng AC đi qua điểm I(6;2). Tìm tọa độ các đỉnh của tam giác ABC. + Cho tam giác ABC vuông tại A (BC = a, CA = b, AB = c), đường cao AH, I là điểm thuộc đoạn AH sao cho AI = 2IH. a) Chứng minh rằng a2IA + 2b2IB + 2c2IC = 0. b) Biết góc ACB = 30°, tìm giá trị nhỏ nhất của biểu thức k = 2MA + 3MB + 7MC với M là điểm bất kỳ trong mặt phẳng chứa tam giác. + Cho hàm số f(x) = (x2 + mx + 1)/(x2 + x + 1) (m là tham số). Tìm m để với mọi a, b, c thì f(a), f(b), f(c) là độ dài ba cạnh của một tam giác.