Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề rút gọn biểu thức chứa căn thức bậc hai

Tài liệu gồm 44 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề rút gọn biểu thức chứa căn thức bậc hai, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 9 chương 1 bài số 8. A. KIẾN THỨC TRỌNG TÂM Để rút gọn biểu thức chứa căn bậc hai ta thường thực hiện các bước sau: + Bước 1: Tìm điều kiện xác định của biểu thức (nếu đề chưa cho điều kiện). Chú ý điều kiện căn thức, điều kiện mẫu và điều kiện phần chia. + Bước 2: Phân tích mẫu thành nhân tử, kết hợp phân tích tử bằng các phép biến đổi đơn giản. + Bước 3: Bỏ ngoặc, thu gọn các biểu thức một cách hợp lý. Kết hợp điều kiện bài toán để kết luận. B. CÁC DẠNG BÀI MINH HỌA I. CÁC DẠNG TOÁN Bài toán rút gọn tổng hợp thường có các bài toán phụ: tính giá trị biểu thức khi cho giá trị của ẩn; tìm điều kiện của biến để biểu thức lớn hơn (nhỏ hơn) một số nào đó; tìm giá trị của biến để biểu thức có giá trị nguyên; tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức … Do vậy, ta phải áp dụng các phương pháp tương ứng, thích hợp cho từng dạng toán. Dạng toán 1 . Rút gọn biểu thức. Dạng toán 2 . Rút gọn biểu thức – tính giá trị của biểu thức khi cho giá trị của ẩn. Các bước thực hiện: + Rút gọn, chú ý điều kiện của biểu thức. + Rút gọn giá trị của biến nếu cần. + Thay vào biểu thức rút gọn. Dạng toán 3 . Rút gọn biểu thức – tìm x để biểu thức rút gọn đạt giá trị nguyên. + Rút gọn biểu thức. + Lấy tử chia cho mẫu tách biểu thức thành tổng của một số nguyên và một biểu thức có tử là một số nguyên. + Trong biểu thức mới tạo thành, ta cho mẫu là các ước nguyên của tử để suy ra x. Dạng toán 4 . Rút gọn biểu thức – tìm x để biểu thức thỏa bằng hoặc lớn hơn (nhỏ hơn) một số cho trước. + Rút gọn. + Cho biểu thức rút gọn thỏa điều kiện ta được phương trình hoặc bất phương trình, chú ý điều kiện của ẩn trong bài toán. Dạng toán 5 . Rút gọn biểu thức – tìm x để biểu thức đạt giá trị lớn nhất (GTLN), giá trị nhỏ nhất (GTNN). + Rút gọn. + Biến đổi biểu thức về dạng: Số không âm + hằng số rồi suy ra GTNN; Hằng số – số không âm rồi suy ra GTLN; Sử dụng bất đẳng thức Cô-si. Dạng toán 6 . Nâng cao phát triển tư duy. II. TRẮC NGHIỆM RÈN PHẢN XẠ

Nguồn: toanmath.com

Đọc Sách

Chuyên đề liên hệ giữa cung và dây
Nội dung Chuyên đề liên hệ giữa cung và dây Bản PDF - Nội dung bài viết Chuyên đề liên hệ giữa cung và dây Chuyên đề liên hệ giữa cung và dây Tài liệu này bao gồm 12 trang, đã được biên soạn bởi tác giả Toán Học Sơ Đồ. Tài liệu tổng hợp kiến thức chính, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm về chuyên đề liên hệ giữa cung và dây. Đây là nguồn tư liệu hữu ích để hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 3 bài số 2. I. Tóm tắt lý thuyết 1. Định lí 1: Hai cung nhỏ trong cùng một đường tròn hoặc trong hai đường tròn bằng nhau, thì hai cung bằng nhau căng hai dây bằng nhau. 2. Định lí 2: Hai cung nhỏ trong cùng một đường tròn hoặc trong hai đường tròn bằng nhau, thì cung lớn hơn căng dây lớn hơn. 3. Bổ sung: Trong một đường tròn, hai cung bị chắn giữa hai dây song song thì bằng nhau. Đường kính đi qua trung điểm của một cung thì đi qua trung điểm của dây căng cung ấy. Đường kính cũng đảm bảo góc vuông giữa dây và cung. II. Bài tập minh họa Phương pháp giải: Để giải các bài toán liên quan đến cung và dây, cần hiểu rõ định nghĩa góc ở tâm và sự liên hệ giữa cung và dây. III. Bài tập tự luyện Tiếp tục làm các bài tập để củng cố kiến thức và kỹ năng giải quyết vấn đề liên quan đến chuyên đề liên hệ giữa cung và dây.
Chuyên đề góc ở tâm, số đo cung
Nội dung Chuyên đề góc ở tâm, số đo cung Bản PDF - Nội dung bài viết Chuyên Đề Góc Ở Tâm, Số Đo CungTóm Tắt Lý Thuyết:Bài Tập Minh Họa:Phiếu Bài Tự Luyện: Chuyên Đề Góc Ở Tâm, Số Đo Cung Tài liệu này gồm 09 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận và trắc nghiệm về chuyên đề góc ở tâm, số đo cung. Được thiết kế để hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 3 bài số 1. Tóm Tắt Lý Thuyết: Góc ở tâm Số đo cung So sánh hai cung Định lí Bài Tập Minh Họa: Phương pháp giải bài tập trong tài liệu này giúp học sinh tính số đo của góc ở tâm và số đo của cung bị chắn. Một số kiến thức quan trọng bao gồm: Số đo của cung nhỏ bằng số đo của góc ở tâm chắn cung đó Số đo của cung lớn bằng hiệu giữa 360 độ và số đo của cung nhỏ Số đo của nửa đường tròn là 180 độ Cung cả đường tròn có số đo 360 độ Sử dụng tỉ số lượng giác của một góc để tính góc Sử dụng quan hệ đường kính và dây cung Phiếu Bài Tự Luyện: Tài liệu cung cấp phiếu bài tập tự luyện để học sinh tự kiểm tra và củng cố kiến thức sau khi học xong phần lý thuyết và bài tập minh họa.
Chuyên đề vị trí tương đối của hai đường tròn
Nội dung Chuyên đề vị trí tương đối của hai đường tròn Bản PDF - Nội dung bài viết Chuyên đề vị trí tương đối của hai đường trònKIẾN THỨC TRỌNG TÂMCÁC DẠNG BÀI MINH HỌATRẮC NGHIỆM RÈN PHẢN XẠ Chuyên đề vị trí tương đối của hai đường tròn Tài liệu này được biên soạn bởi tác giả Toán Học Sơ Đồ, gồm tổng cộng 36 trang. Nó tập trung vào kiến thức quan trọng về vị trí tương đối của hai đường tròn và cung cấp hướng dẫn chi tiết để giải các dạng bài tập tự luận & trắc nghiệm trong chương trình Hình học lớp 9, chương 2 bài số 7 và bài số 8. KIẾN THỨC TRỌNG TÂM 1. Tính chất của đường nối tâm: - Đường nối tâm là trục đối xứng của hình tạo bởi hai đường tròn. - Nếu hai đường tròn tiếp xúc nhau, tiếp điểm sẽ nằm trên đường nối tâm. - Nếu hai đường tròn cắt nhau, đường nối tâm là đường trung trực của dây chung. 2. Liên hệ giữa vị trí của hai đường tròn với đoạn nối tâm và bán kính: - Hai đường tròn có thể cắt nhau, tiếp xúc nhau hoặc không giao nhau. - Trường hợp tiếp xúc nhau có thể là tiếp xúc ngoài hoặc tiếp xúc trong. - Trường hợp không giao nhau có thể hai đường tròn ở ngoài nhau, một đường tròn đựng đường tròn khác hoặc hai đường tròn đồng tâm. CÁC DẠNG BÀI MINH HỌA - Dạng 1: Nhận biết vị trí tương đối của hai đường tròn. - Dạng 2: Bài tập về hai đường tròn cắt nhau. - Dạng 3: Bài tập về hai đường tròn tiếp xúc. TRẮC NGHIỆM RÈN PHẢN XẠ Ngoài ra, tài liệu cũng cung cấp bài tập tự luyện để học sinh rèn luyện kỹ năng giải các bài toán liên quan đến vị trí tương đối của hai đường tròn.
Chuyên đề dấu hiệu nhận biết tiếp tuyến của đường tròn
Nội dung Chuyên đề dấu hiệu nhận biết tiếp tuyến của đường tròn Bản PDF - Nội dung bài viết Chuyên đề dấu hiệu nhận biết tiếp tuyến của đường trònTóm tắt lý thuyếtBài tập và các dạng toánTrắc nghiệm rèn phản xạ Chuyên đề dấu hiệu nhận biết tiếp tuyến của đường tròn Tài liệu này bao gồm 28 trang và được biên soạn bởi tác giả Toán Học Sơ Đồ. Nó tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận và trắc nghiệm về chuyên đề dấu hiệu nhận biết tiếp tuyến của đường tròn. Hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 2 bài số 5. Tóm tắt lý thuyết Dấu hiệu 1: Nếu một đường thẳng đi qua một điểm của đường tròn và vuông góc với bán kính đi qua điểm đó thì đường thẳng đó là một tiếp tuyến của đường tròn. Dấu hiệu 2: Theo định nghĩa tiếp tuyến. Bài tập và các dạng toán Dạng 1: Chứng minh một đường thẳng là tiếp tuyến của một đường tròn. Phương pháp giải có thể làm theo các cách như chứng minh điểm tiếp xúc nằm trên đường tròn và vuông góc với đường thẳng, hoặc kẻ đoạn vuông góc từ tâm đến điểm tiếp xúc và chứng minh bằng tính chất vuông góc. Dạng 2: Tính độ dài. Sử dụng định lý và công thức lượng trong tam giác vuông để tính độ dài các đoạn thẳng. Dạng 3: Bài toán tổng hợp. Trắc nghiệm rèn phản xạ Sau khi học lý thuyết và làm bài tập, học sinh có thể rèn luyện kỹ năng phản xạ qua việc làm các câu hỏi trắc nghiệm để kiểm tra hiểu biết và áp dụng kiến thức.