Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu Toán 9 chủ đề tứ giác nội tiếp

Tài liệu gồm 19 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề tứ giác nội tiếp trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Lý thuyết. 1. Định nghĩa: Tứ giác nội tiếp đường tròn là tứ giác có bốn đỉnh nằm trên đường tròn đó. 2. Các tính chất: Cho tứ giác ABCD nội tiếp đường tròn (O), khi đó: – Tổng số đo hai góc đối diện bằng 180 độ. – Nếu một tứ giác có tổng số đo hai góc đối diện bằng 180 độ thì tứ giác đó nội tiếp được đường tròn. 3. Một số dấu hiệu nhận biết tứ giác nội tiếp. – Tứ giác có tổng hai góc đối bằng 180 độ. – Tứ giác có góc ngoài tại một đỉnh bằng góc trong của đỉnh đối diện. – Tứ giác có bốn đỉnh cách đều một điểm cố định (mà ta có thể xác định được). Điểm đó là tâm của đường tròn ngoại tiếp tứ giác. – Tứ giác có hai đỉnh kề cùng nhìn cạnh chứa hai đỉnh còn lại dưới một góc α (dựa vào kiến thức cung chứa góc). B. Bài tập.

Nguồn: toanmath.com

Đọc Sách

Một kỹ năng khi sử dụng phương pháp đặt ẩn phụ giải phương trình - hệ phương trình
Tài liệu gồm 05 trang, được biên soạn bởi thầy giáo Vũ Hồng Phong (giáo viên Toán trường THPT Tiên Du 1, huyện Tiên Du, tỉnh Bắc Ninh), hướng dẫn một kỹ năng khi sử dụng phương pháp đặt ẩn phụ giải phương trình – hệ phương trình. 1. KIẾN THỨC CẦN NHỚ. Một điều quan trọng giúp chúng ta giải được một phương trình (PT) hay hệ phương trình bằng cách đặt ẩn phụ đó là phát hiện được các mối liên hệ giữa các ẩn với nhau. Mối liên hệ này gồm có: + Mối liên hệ giữa các ẩn mới. + Mối liên hệ giữa các ẩn cũ. + Mối liên hệ giữa các ẩn mới với các ẩn cũ. Mối liên hệ giữa các ẩn được thể hiện dưới dạng các đẳng thức hoặc bất đẳng thức. 2. VÍ DỤ MINH HỌA. 3. BÀI TẬP ĐỀ NGHỊ.
Chuyên đề toán thực tế môn Toán 9 - Nguyễn Ngọc Dũng
Tài liệu gồm 52 trang, được biên soạn bởi thầy giáo Nguyễn Ngọc Dũng, phân dạng và tuyển chọn các bài toán thực tế môn Toán 9. MỤC LỤC : Bài số 1. Định lý Vi-ét và ứng dụng 1. Bài số 2. Kỹ năng làm toán thực tế “Hàm số và đồ thị” 2. Bài số 3. Giải toán bằng cách lập phương trình, hệ phương trình 15. Bài số 4. Các bài toán thực tế liên quan “Hình không gian” 24. Bài số 5. Các bài toán thực tế liên quan “Hình học phẳng” 38.