Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi cấp tỉnh Toán 9 năm 2022 - 2023 sở GDĐT Bà Rịa - Vũng Tàu

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Bà Rịa – Vũng Tàu; kỳ thi được diễn ra vào thứ Năm ngày 23 tháng 03 năm 2023. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán 9 năm 2022 – 2023 sở GD&ĐT Bà Rịa – Vũng Tàu : + Trên mặt phẳng toạ độ Oxy, cho điểm A thuộc parabol (P): y = -x2 có tung độ yA = –4. Tìm tọa độ các điểm B thuộc (P) sao cho tam giác OAB vuông tại B. + Cho điểm M nằm ngoài đường tròn (O). Từ M vẽ hai tiếp tuyến MA, MC của đường tròn (O) (A, C là các tiếp điểm). Vẽ cát tuyến MBD của (O) sao cho B nằm giữa M và D, BC < BD. 1) Chứng minh 2) Trên đoạn BD lấy điểm F sao cho FAD = BAC. Chứng minh hai tam giác ABF, ACD đồng dạng và AD.BC + AB.CD = AC.BD. 3) Tiếp tuyến tại B của đường tròn (O) cắt MC tại N và cắt đường thẳng CD tại P; ND cắt đường tròn (O) tại E. Chứng minh A, E, P thẳng hàng. + Cho điểm A nằm ngoài đường tròn (O). Từ điểm A vẽ hai tiếp tuyến AB, AC của đường tròn (O) (B, C là các tiếp điểm). Vẽ cát tuyến AED (E nằm giữa A và D) không đi qua O cắt BC ở F. Hai tia CE và DB cắt nhau ở G, trên tia đối của tia BC lấy điểm H sao cho tứ giác CDHG nội tiếp đường tròn.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi Toán 9 năm 2022 - 2023 phòng GDĐT thành phố Hải Dương (vòng 2)
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo thành phố Hải Dương (vòng 2); kỳ thi được diễn ra vào ngày 01 tháng 10 năm 2022.
Đề học sinh giỏi Toán 9 năm 2022 - 2023 phòng GDĐT huyện Phúc Thọ - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Phúc Thọ, thành phố Hà Nội; đề thi gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút (không kể thời gian phát đề). Trích dẫn Đề học sinh giỏi Toán 9 năm 2022 – 2023 phòng GD&ĐT huyện Phúc Thọ – Hà Nội : + Cho x, y là hai số dương thoả mãn: (x + y)2 >= 6 + 2xy. Tìm giá trị nhỏ nhất của biểu thức Q = x4 – 2×2 + y2 + 6/x2 + 8/y2. + Cho M = (x2 + 2yz – 1)(y2 + 2xz – 1)(1 – z2 – 2xy). Trong đó x, y, z là các số hữu tỉ thỏa mãn xy + yz + zx = 1. Chứng minh rằng: M là một số hữu tỉ. + Cho tam giác ABC vuông tại A, đường cao AH, I là trung điểm AC, F là hình chiếu của I trên BC. Kẻ tia Cx vuông góc AC cắt IF tại E. a) Cho AB = 20cm, HC = 9cm. Tính độ dài AH và AC. b) Chứng minh rằng: HA.HI = HB.HE. c) Chứng minh AE vuông góc với BI.
Đề học sinh giỏi Toán 9 năm 2022 - 2023 trường THCS Cầu Giấy - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 năm học 2022 – 2023 trường THCS Cầu Giấy, quận Cầu Giấy, thành phố Hà Nội; đề thi gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút (không kể thời gian phát đề); kỳ thi được diễn ra vào ngày … tháng 09 năm 2022. Trích dẫn Đề học sinh giỏi Toán 9 năm 2022 – 2023 trường THCS Cầu Giấy – Hà Nội : + Với các số thực không âm a, b, c thỏa mãn a + b + c = 3, tìm giá trị nhỏ nhất và giá trị lớn nhất của biểu thức T = 1/(a + 1) + 1/(b + 1) + 1(c + 1). + Cho tam giác ABC nhọn, không cân (AB < AC). Các đường cao AD, BE, CF của tam giác ABC đồng qui tại H. Gọi M là trung điểm của BC; I là trung điểm của AH. 1) Chứng minh IEM = 90°. 2) Đường thẳng qua I và vuông góc với HM cắt HM, EF lần lượt tại N, S. Đoạn thẳng IM cắt EF tại J. Chứng minh IJ.IM = IN.IS và SH song song với BC. 3) Đường thẳng SI cắt AB, AC lần lượt tại P, Q. Chứng minh I là trung điểm của PQ. + Xét tập hợp A gồm các số nguyên dương thỏa mãn đồng thời các điều kiện sau: (i) Phần tử lớn nhất của tập hợp A là 100. (ii) Với mọi phần tử x thuộc A, nếu x không phải là phần tử nhỏ nhất thì tồn tại a, b, c thuộc A (a, b, c không nhất thiết phân biệt) sao cho x = a + b + c. 1) Chứng minh tất cả các phần tử của tập hợp A đều là số chẵn. 2) Tập hợp A có nhiều nhất là bao nhiêu phần tử?
Đề khảo sát HSG Toán 9 lần 1 năm 2022 - 2023 trường THCS Nguyễn Hồng Lễ - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng đội dự tuyển học sinh giỏi cấp tỉnh môn Toán 9 lần 1 năm học 2022 – 2023 trường THCS Nguyễn Hồng Lễ, thành phố Sầm Sơn, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 15 tháng 09 năm 2022.