Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra cuối hè năm 2019 môn Toán 10 trường THPT chuyên Bắc Ninh

Với mục đích kiểm tra lại các kiến thức Toán 9 của học sinh khối 10 sau quá trình nghỉ hè kéo dài, vừa qua, trường THPT chuyên Bắc Ninh đã tổ chức kỳ thi kiểm tra chất lượng môn Toán cuối kỳ nghỉ hè năm 2019, qua đây, học sinh sẽ ôn tập lại các kiến thức Toán 9, nhằm làm nền tảng vững chắc trước khi vào học chương trình môn Toán lớp 10 năm học 2019 – 2020. Đề kiểm tra cuối hè năm 2019 môn Toán 10 trường THPT chuyên Bắc Ninh được dành cho học sinh thi và các lớp chuyên Toán, đề được biên soạn theo dạng đề tự luận với 05 bài toán, học sinh làm bài trong khoảng thời gian 150 phút (không kể thời gian giám thị coi thi phát đề), đề thi có lời giải chi tiết. [ads] Trích dẫn đề kiểm tra cuối hè năm 2019 môn Toán 10 trường THPT chuyên Bắc Ninh : + Cho hình vuông ABCD có tâm O. Đường thẳng d quay quanh O, cắt hai cạnh AD và BC lần lượt ở E và F (không trùng với các đỉnh của hình vuông). Qua E và F lần lượt kẻ đường thẳng song song với BD và AC chúng cắt nhau tại I. Kẻ IH vuông góc với EF tại H. Chứng minh rằng: a) Điểm I chạy trên đoạn AB. b) Điểm H thuộc đường tròn cố định và đường thẳng IH đi qua một điểm cố định. + Cho tập X = {1, 2, 3 … 2020} Chứng minh rằng trong số 1011 phần tử bất kì của tập X luôn có hai phần tử nguyên tố cùng nhau. + Chứng minh rằng tồn tại vô số số nguyên dương n thỏa mãn 5^n − 1 chia hết cho n.

Nguồn: toanmath.com

Đọc Sách

Đề kiểm tra chuyên đề Toán 10 lần 2 năm 2019 - 2020 trường Quang Hà - Vĩnh Phúc
giới thiệu đến quý thầy, cô giáo và các em học sinh đề kiểm tra chuyên đề Toán 10 lần 2 năm học 2019 – 2020 trường THPT Quang Hà – Vĩnh Phúc; đề thi được biên soạn theo dạng tự luận với 09 câu hỏi và bài toán, bao quát nội dung Toán 10 từ đầu năm học đến thời điểm diễn ra kỳ thi, thời gian làm bài thi là 120 phút (không tính thời gian giáo viên phát đề), đề thi có lời giải chi tiết và thang điểm. Trích dẫn đề kiểm tra chuyên đề Toán 10 lần 2 năm 2019 – 2020 trường Quang Hà – Vĩnh Phúc : + Trong mặt phẳng tọa độ Oxy, cho 3 điểm A(1;2); B(-2;6); C(4;4). a/ Chứng minh 3 điểm A, B, C không thẳng hàng. b/ Tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành. + Cho tam giác ABC. Gọi D, E lần lượt là các điểm thỏa mãn: BD = 2/3.BC, AE = 1/4.AC. Điểm K trên đoạn thẳng AD sao cho B, K, E thẳng hàng. Tìm tỉ số AD/AK. + Xác định Parabol y = ax^2 + bx + c biết rằng Parabol đó đi qua điểm A(0;2) và đỉnh I(1;1). + Cho phương trình x^2 + 3x + m = 0. Tìm m để phương trình có hai nghiệm phân biệt x1; x2 thỏa mãn: x1^2 + x2^2 = 17. + Xác định a, b để đồ thị hàm số y = ax + b đi qua hai điểm A(0;-3) và B(2;5).
Đề ôn tập Toán 10 tháng 03 năm 2020 trường THPT chuyên Hà Nội Amsterdam
Do ảnh hưởng của tình hình dịch bệnh vi-rút Corona (COVID-19), học sinh khối 10 trường THPT chuyên Hà Nội – Amsterdam vẫn chưa thể đi học trở lại từ sau kỳ nghỉ lễ Tết Nguyên Đán 2020, điều này ảnh hưởng lớn đến việc tiếp thu kiến thức môn Toán 10. Để giúp các em có thể tự ôn tập tại nhà, tổ Toán – Tin học trường THPT chuyên Hà Nội – Amsterdam đã biên soạn bộ đề ôn tập môn Toán 10 giai đoạn tháng 03 năm 2020. Đề ôn tập Toán 10 tháng 03 năm 2020 trường THPT chuyên Hà Nội – Amsterdam gồm có 07 trang với 03 đề, chọn lọc các câu hỏi trắc nghiệm và tự luận từ cơ bản đến nâng cao giúp học sinh khối 10 tự ôn luyện. Trích dẫn đề ôn tập Toán 10 tháng 03 năm 2020 trường THPT chuyên Hà Nội – Amsterdam : + Cho ba số a, b, c thoả mãn đồng thời a + b – c > 0, a + b – c > 0, a + b – c > 0. Để ba số a, b, c là ba cạnh của một tam giác thì cần thêm đều kiện gì? A. Chỉ cần một trong ba số a, b, c dương. B. Không cần thêm điều kiện gì. C. Cần có cả a, b, c ≥ 0. D. Cần có cả a, b, c > 0. [ads] + Cho phương trình: Ax + By + C = 0 với A^2 + B^2 > 0. Mệnh đề nào sau đây sai? A. B = 0 thì đường thẳng (1) song song hay trùng với y’Oy. B. Điểm M(x0;y0) thuộc đường thẳng (1) khi và chỉ khi Ax0 + By0 + C khác 0. C. (1) là phương trình tổng quát của đường thẳng có vectơ pháp tuyến là n = (A;B). D. A = 0 thì đường thẳng (1) song song hay trùng với x’Ox. + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có E, F là hình chiếu vuông góc của B, C lên đường phân giác trong vẽ từ A, gọi K là giao điểm của các đường thẳng FB và CE. Tìm tọa độ điểm A có hoành độ nguyên nằm trên đường thẳng d có phương trình 2x + y + 3 = 0 biết K(-1;-1/2); E(2,-1).
Đề khảo sát Toán 10 lần 1 năm 2019 - 2020 trường Thuận Thành 1 - Bắc Ninh
Ngày … tháng 01 năm 2020, trường THPT Thuận Thành số 1, tỉnh Bắc Ninh tổ chức kỳ thi khảo sát chất lượng lần 1 môn Toán lớp 10 năm học 2019 – 2020. Đề khảo sát Toán 10 lần 1 năm 2019 – 2020 trường Thuận Thành 1 – Bắc Ninh mã đề 716 gồm có 05 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án mã đề 716, 717, 718, 719, 720 và lời giải chi tiết các bài toán vận dụng cao. Trích dẫn đề khảo sát Toán 10 lần 1 năm 2019 – 2020 trường Thuận Thành 1 – Bắc Ninh : + Phủ định mệnh đề “có một học sinh của lớp 10A không thích học môn toán” là? A. Tất cả các bạn lớp 10A đều thích học môn toán. B. Không có bạn nào lớp 10A thích học môn toán. C. Có ít nhất một bạn lớp 10A không thích học môn toán. D. Có nhiều nhất một bạn lớp 10A không thích học môn toán. + Để giữ gìn phong tục tết Việt Nam, gia đình bác Long Thắm có tờ 100.000 đồng muốn đổi thành các tờ 5000 đồng và 10.000 đồng để mừng tuổi cho các cháu? Hỏi hai bác có bao nhiêu cách đổi? [ads] + Lớp học 10A của trường THPT Thuận Thành số 1, tỉnh Bắc Ninh có 30 học sinh. Qua khảo lựa chọn về sở thích các môn thể dục thể thao như đá cầu, bóng đá, bóng chuyền … được biết có 13 bạn thích đá cầu, 14 bạn thích bóng chuyền và 15 bạn thích bóng đá. Có 9 bạn thích cả bóng đá và đá cầu, có 8 bạn thích cả đá cầu và bóng chuyền và 5 bạn chỉ thích bóng đá nhưng không thích bóng chuyền. Hỏi lớp 10A có bao nhiêu bạn không thích cả ba môn thể thao nói trên biết rằng có 6 bạn thích cả ba môn thể thao đó? + Cho hình vuông ABCD có cạnh bằng 2. Gọi M, N lần lượt là trung điểm đoạn thẳng AB, CD. Gọi H thuộc đoạn MN sao cho HM = 3HN. Lấy điểm I thuộc đường thẳng CD sao cho BI vuông góc với AH. Khi đó S_CAI thuộc khoảng nào sau đây? + Cho hai điểm A(-3,2), B(4,3). Điểm C thuộc trục Ox và có hoành độ dương để tam giác CAB vuông tại C. Khi đó tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành?