Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát giữa kỳ 2 Toán 9 năm 2019 - 2020 trường THCS Gia Khánh - Vĩnh Phúc

Đề khảo sát giữa kỳ 2 Toán 9 năm 2019 – 2020 trường THCS Gia Khánh – Vĩnh Phúc gồm 04 câu trắc nghiệm (02 điểm) và 04 câu tự luận (08 điểm), thời gian làm bài 90 phút (không kể thời gian phát đề), đề thi có đáp án trắc nghiệm và hướng dẫn chấm tự luận. Trích dẫn đề khảo sát giữa kỳ 2 Toán 9 năm 2019 – 2020 trường THCS Gia Khánh – Vĩnh Phúc : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Hai xe lửa khởi hành đồng thời từ hai ga cách nhau 750 km và đi ngược chiều nhau, sau 10 giờ chúng gặp nhau. Nếu xe thứ nhất khởi hành trước xe thứ hai 3 giờ 45 phút thì sau khi xe thứ hai đi được 8 giờ chúng gặp nhau. Tính vận tốc của mỗi xe. + Cho ABC nhọn nội tiếp đường tròn (O), hai đường cao BM, CN của ABC cắt nhau tại H. Chứng minh: a) Tứ giác BCMN nội tiếp. Xác định tâm của đường tròn ngoại tiếp tứ giác BCMN. b) AMN ∽ ABC c) Tia AO cắt đường tròn (O) tại K. Chứng minh: Tứ giác BHCK là hình bình hành. + Cho biểu thức M = 2 2 2 2 x y z t 2 với x y z t N. Tìm giá trị nhỏ nhất của M và các giá trị tương ứng của x y z t biết rằng: 2 2 2 2 2 2 21 3 4 101.

Nguồn: toanmath.com

Đọc Sách

Đề thi giữa học kì 2 (HK2) lớp 9 môn Toán năm 2017 2018 trường THCS Dịch Vọng Hà Nội
Nội dung Đề thi giữa học kì 2 (HK2) lớp 9 môn Toán năm 2017 2018 trường THCS Dịch Vọng Hà Nội Bản PDF - Nội dung bài viết Đề thi giữa học kì 2 môn Toán lớp 9 trường THCS Dịch Vọng Hà Nội năm học 2017-2018 Đề thi giữa học kì 2 môn Toán lớp 9 trường THCS Dịch Vọng Hà Nội năm học 2017-2018 Xin chào quý thầy cô và các em học sinh lớp 9! Hôm nay, Sytu xin giới thiệu đến các bạn đề thi khảo sát chất lượng giữa học kì 2 môn Toán lớp 9 năm học 2017-2018 tại trường THCS Dịch Vọng, Hà Nội. Dưới đây là một số câu hỏi từ đề thi: Câu 1: Một xe khách và một xe du lịch khởi hành cùng từ A đến B. Biết vận tốc của xe du lịch lớn hơn vận tốc của xe khách là 20 km/h. Xe du lịch đến B trước 50 phút so với xe khách. Tính vận tốc của mỗi xe biết quãng đường AB dài 100km. Câu 2: Cho hàm số y = ax^2 với a > 0 có đồ thị là một parabol. a) Xác định giá trị của a sao cho parabol đi qua điểm A(1, 1). b) Vẽ đồ thị của hàm số y = ax^2 với giá trị a từ câu trên. c) Tìm tọa độ giao điểm của đường thẳng y = x + 2 và parabol với giá trị a đã xác định ở câu a. d) Tính diện tích tam giác AOB với A, B là điểm giao điểm của đường thẳng và parabol. Câu 3: Cho đường thẳng d và đường tròn O, R không có điểm chung. Kẻ OH vuông góc với d tại H. Chọn điểm M bất kì thuộc d. Qua M, kẻ hai tiếp tuyến MA và MB tới đường tròn OR. Nối AB cắt OH và OM lần lượt tại K và I. a) Chứng minh rằng 5 điểm M, H, A, O, B cùng thuộc một đường tròn. b) Chứng minh rằng OK = OH = OI = OM. c) Chứng minh rằng khi M di chuyển trên d thì đường thẳng AB đi qua một điểm cố định. d) Tìm vị trí của M để diện tích tam giác OIK đạt giá trị lớn nhất. Hy vọng rằng đề thi sẽ giúp các em ôn tập và chuẩn bị tốt cho kỳ thi sắp tới. Chúc các em thành công!