Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát chất lượng Toán 9 năm 2020 - 2021 trường THCS Tây Sơn - Hà Nội

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề khảo sát chất lượng Toán 9 năm học 2020 – 2021 trường THCS Tây Sơn, quận Hai Bà Trưng, thành phố Hà Nội; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm; kỳ thi được diễn ra vào ngày 16 tháng 05 năm 2021, nhằm giúp các em học sinh lớp 9 rèn luyện để chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 môn Toán sắp tới. Trích dẫn đề khảo sát chất lượng Toán 9 năm 2020 – 2021 trường THCS Tây Sơn – Hà Nội : + Một công ty mỹ phẩm chuẩn bị ra một mẫu sản phẩm dưỡng da mới mang tên Ngọc Trai với thiết kế một khối cầu bán kính là 3cm, như viên ngọc trai.Bên trong là một khối trụ nằm trong nửa khối cầu để đựng kem dưỡng như hình vẽ có đường cao bằng 2,5 cm và đường kính đáy hình trụ bằng đúng bán kính hình cầu.Tính thể tích của phần khối cầu còn lại nằm ngoài hình trụ đó. + Trong mặt phẳng toạ độ Oxy, cho parabol (P): 1 2 2 y x và đường thẳng (d): y = mx + 2. a) Chứng minh rằng (d) luôn cắt (P) tại hai điểm phân biệt A; B. b) Gọi M là giao điểm của đường thẳng (d) và trục tung, H và K là hình chiếu của A và B trên trục hoành .Tìm m để tam giác MHK có diện tích bằng 4. + Cho đường tròn (O;R) đường kính AB = 2R. Gọi C là trung điểm của OA. Dây MN vuông góc với AB tại C.Trên cung MB nhỏ lấy điểm K. Nối AK cắt MN tại H. a) Chứng minh tứ giác BCHK nội tiếp. b) Chứng minh tích AH.AK không đổi khi K chuyển động trên cung nhỏ MB. Chứng minh MA là tiếp tuyến của đường tròn ngoại tiếp tam giác MHK. c) Tìm vị trí của K để tổng KM + KN + KB lớn nhất.

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát Toán 9 tháng 2 năm 2023 trường THCS Thái Thịnh - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán 9 tháng 2 năm học 2022 – 2023 trường THCS Thái Thịnh, quận Đống Đa, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 24 tháng 02 năm 2023. Trích dẫn Đề khảo sát Toán 9 tháng 2 năm 2023 trường THCS Thái Thịnh – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Hai người cùng làm một công việc thì sau 7 giờ 12 phút hoàn thành xong công việc. Nếu người thứ nhất làm trong 5 giờ và người thứ hai làm trong 6 giờ thì họ làm được 3/4 công việc. Hỏi mỗi người làm một mình thì bao lâu xong công việc? + Cho hệ phương trình. Tìm m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn x và y là hai số đối nhau. + Cho đường thẳng d và đường tròn (O;R) không có điểm chung. Kẻ OH vuông góc d tại H. Điểm A thuộc d và không trùng với điểm H. Qua A kẻ hai tiếp tuyến AB, AC tới (O) (B và C là các tiếp điểm). BC cắt OA, OH lần lượt tại M và N. Đoạn thẳng OA cắt (O) tại I. 1) Chứng minh bốn điểm O, B, A, C cùng thuộc một đường tròn. 2) Chứng minh OM.OA = ON.OH. 3) Chứng minh: I là tâm đường tròn nội tiếp ABC. 4) Chứng minh rằng khi điểm A di động trên đường thẳng d thì đường thẳng BC luôn đi qua một điểm cố định.
Đề khảo sát Toán 9 lần 1 năm 2022 - 2023 phòng GDĐT Quảng Xương - Thanh Hoá
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng học sinh môn Toán 9 ôn thi vào lớp 10 THPT lần 1 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Quảng Xương, tỉnh Thanh Hoá. Trích dẫn Đề khảo sát Toán 9 lần 1 năm 2022 – 2023 phòng GD&ĐT Quảng Xương – Thanh Hoá : + Cho hàm số y = (m + 2)x + n (d). a) Tìm m, n để đường thẳng (d) có hệ số góc là -1 và qua điểm A(-2;3) b) Tìm m, n để đường thẳng (d) song song với đường thẳng y = 3x – 1 và cắt đường thẳng y = 2x + 5 tại điểm có tung độ là 3. + Cho nửa đường tròn (O;R) đường kính AB. Từ điểm M tùy ý thuộc nửa đường tròn (O) (M khác A và B) vẽ tiếp tuyến dvới nửa đường tròn (O). Gọi I, K là hình chiếu của A và B trên đường thẳng d. Gọi H là hình chiếu của M trên AB. a) Chứng minh: Bốn điểm B, H, M, K cùng thuộc một đường tròn b) Chứng minh BM là tia phân giác của góc OBK và tam giác IHK vuông c) Xác định vị trí của M trên nửa đường tròn (O) để diện tích tứ giác AIKB lớn nhất. + Cho x, y > 0 và x + y ≤ 4/5. Tìm giá trị nhỏ nhất của biểu thức: M = x + y + 1/x + 1/y.
Đề khảo sát Toán 9 tháng 2 năm 2023 trường THCS Long Biên - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán 9 tháng 2 năm học 2022 – 2023 trường THCS Long Biên, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Tư ngày 22 tháng 02 năm 2023. Trích dẫn Đề khảo sát Toán 9 tháng 2 năm 2023 trường THCS Long Biên – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Hai đội công nhân cùng làm chung một công việc thì sau 15 ngày làm xong. Nếu đội thứ nhất làm riêng trong 3 ngày rồi dừng lại và đội thứ hai làm tiếp công việc đó trong 5 ngày thì cả hai đội hoàn thành được 25% công việc. Hỏi nếu mỗi đội làm riêng thì trong bao nhiêu ngày mới xong công việc? + Trong mặt phẳng tọa độ Oxy, cho hai đường thẳng: (d): y = x + 2 và (d’): y = -2x + 5 a) Tìm tọa độ giao điểm A của (d) và (d’) b) Gọi B, C lần lượt là giao điểm của (d) và (d’) với trục tung. Tính diện tích ABC. + Cho đường tròn (O;R) đường kính AB. Lấy điểm C thuộc đường tròn sao cho AC = R. Trên cung nhỏ BC lấy điểm D (D khác B, C); AC cắt BD tại E; kẻ EH vuông góc với AB tại H, EH cắt AD tại I. Tia DH cắt (O;R) tại điểm thứ hai là F. a) Chứng minh bốn điểm A, H, D, E cùng thuộc một đường tròn. b) Chứng minh DHE = DFC từ đó suy ra CF vuông góc AB. c) Chứng minh BCF là tam giác đều. Xác định vị trí của D trên cung nhỏ BC để chu vi tứ giác ABDC đạt giá trị lớn nhất.
Đề kiểm tra định kì Toán 9 tháng 2 năm 2023 trường THCS Ba Đình - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra định kì môn Toán 9 tháng 2 năm học 2022 – 2023 trường THCS Ba Đình, quận Ba Đình, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Ba ngày 21 tháng 02 năm 2023. Trích dẫn Đề kiểm tra định kì Toán 9 tháng 2 năm 2023 trường THCS Ba Đình – Hà Nội : + Giải toán bằng cách lập hệ phương trình: Hai đội công nhân cùng làm một công việc 6 ngày xong. Nếu đội thứ nhất làm một mình trong 3 ngày và đội thứ hai làm một mình trong 2 ngày thì được 4/9 công việc. Hỏi nếu làm một mình mỗi đội bao lâu xong công việc. + Cho hình vẽ bên. Biết số đo cung EF bằng 134 độ, AOC = 70 độ. a) Tính số đo cung AmC? b) Tính góc AEC và góc AFC? c) Tính góc EIF? d) Tính góc xCE? e) Tính góc EKC? + Cho tam giác ABC nhọn nội tiếp đường tròn (O). Tia phân giác của góc BAC cắt đường tròn tại điểm E, cắt dây BC tại I. a) Chứng minh BIA = ACE b) Chứng minh EC2 = EA.EI.