Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 1 (HK1) lớp 11 môn Toán năm học 2018 2019 trường THPT chuyên Lý Tự Trọng Cần Thơ

Nội dung Đề thi học kì 1 (HK1) lớp 11 môn Toán năm học 2018 2019 trường THPT chuyên Lý Tự Trọng Cần Thơ Bản PDF Đề thi HK1 Toán lớp 11 năm học 2018 – 2019 trường THPT chuyên Lý Tự Trọng – Cần Thơ mã đề 132 được biên soạn nhằm tổng kết lại các nội dung Toán lớp 11 học sinh đã được học trong giai đoạn học kỳ 1 vừa qua của năm học 2018 – 2019, đề gồm 6 trang, được biên soạn theo hình thức trắc nghiệm khách quan kết hợp với tự luận, trong đó phần trắc nghiệm gồm 30 câu, chiếm 60% tổng số điểm, phần tự luận gồm 3 câu, chiếm 40% tổng số điểm, học sinh có 90 phút để hoàn thành đề thi này. Trích dẫn đề thi HK1 Toán lớp 11 năm học 2018 – 2019 trường THPT chuyên Lý Tự Trọng – Cần Thơ : + Một học sinh chứng minh mệnh đề “8^n + 1 chia hết cho 7 với mọi n thuộc N*” như sau: Bước 1: Giả sử đúng với n = k (k thuộc N*), tức là 8^k + 1 chia hết cho 7. Bước 2: Ta có 8^(k + 1) + 1 = 8(8^k + 1) – 7, kết hợp với giả thiết 8^k + 1 chia hết cho 7 nên suy ra được 8^(k + 1) + 1 chia hết cho 7. Vậy 8^n + 1 chia hết cho 7 với mọi n thuộc N*. Khẳng định nào sau đây là đúng? A. Học sinh chứng minh đúng. B. Học sinh chứng minh sai vì không kiểm tra mệnh đề đúng trong trường hợp n =1. C. Học sinh chứng minh sai vì không có giả thiết quy nạp. D. Học sinh chứng minh sai vì không sử dụng giả thiết quy nạp. [ads] + Trường THPT chuyên Lý Tự Trọng – Cần Thơ có 15 học sinh là Đoàn viên ưu tú, trong đó khối 12 có 3 nam và 3 nữ, khối 11 có 2 nam và 3 nữ, khối 10 có 2 nam và 2 nữ. Đoàn trường chọn ra 1 nhóm gồm 4 học sinh là Đoàn viên ưu tú để tham gia lao động Nghĩa trang liệt sĩ. Tính xác suất để nhóm được chọn có cả nam và nữ, đồng thời mỗi khối có 1 học sinh nam. + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành (tham khảo hình vẽ). Tìm giao tuyến của hai mặt phẳng (SAD) và (SBC). A. Giao tuyến của hai mặt phẳng (SAD) và (SBC) là đường thẳng SE với E là giao điểm của AC và BD. B. Giao tuyến của hai mặt phẳng (SAD) và (SBC) là đường thẳng SE với E là giao điểm của AD và BC. C. Giao tuyến của hai mặt phẳng (SAD) và (SBC) là đường thẳng d đi qua S và song song với AD. D. Giao tuyến của hai mặt phẳng (SAD) và (SBC) là đường thẳng d đi qua S và song song với AB.

Nguồn: sytu.vn

Đọc Sách

Đề thi học kỳ 1 Toán 11 năm học 2017 - 2018 trường THPT Thạch Thành 1 - Thanh Hóa
Đề thi học kỳ 1 Toán 11 năm học 2017 – 2018 trường THPT Thạch Thành 1 – Thanh Hóa gồm 4 bài toán tự luận và 20 câu trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết . Trích dẫn đề thi học kỳ 1 Toán 11 : + Cho tứ diện đều ABCD cạnh 2a. Gọi M , N lần lượt là trung điểm các cạnh AC, BC; P là trọng tâm tam giác BCD. a) Xác định giao tuyến của mặt phẳng (MNP) với mặt phẳng (BCD) b) Tính diện tích thiết diện của tứ diện cắt bởi mặt phẳng (MNP) + Xét trên tập xác định thì: A. hàm số lượng giác có tập giá trị là [-1; 1] B. hàm số y = cosx có tập giá trị là [-1; 1] C. hàm số y = tanx có tập giá trị là [-1; 1] D. hàm số y = cotx có tập giá trị là [-1; 1] [ads] + Khẳng định nào sau đây là đúng về phép tịnh tiến? A. Phép tịnh tiến theo véctơ v biến điểm M thành điểm M’ thì véctơ v = MM’ B. Phép tịnh tiến là phép đồng nhất nếu véctơ tịnh tiến v = 0 C. Nếu phép tịnh tiến theo véctơ v biến 2 điểm M, N thành hai điểm M’, N’ thì MNN’M’ là hình bình hành D. Phép tịnh tiến biến một đường tròn thành một elip
Đề thi HK1 Toán 11 năm học 2017 - 2018 trường THPT Nguyễn Trãi - Hà Nội
Đề thi HK1 Toán 11 năm học 2017 – 2018 trường THPT Nguyễn Trãi – Hà Nội gồm 25 câu hỏi trắc nghiệm và 3 bài toán tự luận, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết . Trích dẫn đề thi HK1 Toán 11 : + Trong một giải cầu lông có 6 vận động viên tham dự nội dung đơn nam, số cách trao một bộ huy chương gồm 1huy chương vàng, 1 huy chương bạc và 1 huy chương đồng là? A. 120   B. 360 C .240   D. Kết quả khác + Cho hai đường thẳng (d): x – y + 1 = 0 và (d’): x – y – 5 = 0. Có bao nhiêu điểm I thoả mãn điều kiện phép đối xứng tâm I biến (d) thành (d’). [ads] + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm của SA, SB, P là trọng tâm của tam giác BCD 1) Chứng minh rằng: Đường thẳng MN song song với mặt phẳng (SCD). 2) Tìm giao tuyến của mp(MNP) và mp(ABCD). 3) Tìm giao điểm G của đường thẳng SC và mp(MNP). Tính tỷ số SC/SG. Bạn đọc có thể tham khảo thêm các đề thi HK1 Toán 11 của các trường THPT và sở GD&ĐT trên toàn quốc tại đây.
Đề thi học kỳ I Toán 11 năm học 2017 - 2018 trường THPT Yên Mỹ - Hưng Yên
Đề thi học kỳ I Toán 11 năm học 2017 – 2018 trường THPT Yên Mỹ – Hưng Yên mã đề 162 gồm 30 câu hỏi trắc nghiệm và 3 bài toán tự luận, thời gian làm bài 90 phút, đề thi có đáp án . Trích dẫn đề thi học kỳ I Toán 11 : + Phép tịnh tiến T theo vectơ u khác 0, biến đường thẳng d thành đường thẳng d’. Nếu d’ trùng với d thì giá của vectơ u: A. không song song với d. B. trùng với d. C. song song với d. D. song song hoặc trùng với d. + Cho hình chóp S.ABCD đáy là hình bình hành. Gọi M, N lần lượt là trung điểm của SA, CD. a) Tìm giao tuyến của hai mặt phẳng (SAC) và (SBD). b) Chứng minh MN song song với (SBC). [ads] + Với mọi x thuộc khoảng (0; π/2), so sánh cos(sinx) với cos1 thì: A. không so sánh được. B. cos(sinx) < cos1. C. cos(sinx) > cos1. D. cos(sinx) ≥ cos1.
Đề thi HK1 Toán 11 năm học 2017 - 2018 trường THPT Phước Thạnh - Tiền Giang
Đề thi HK1 Toán 11 năm học 2017 – 2018 trường THPT Phước Thạnh – Tiền Giang gồm 28 câu hỏi trắc nghiệm và 3 bài toán tự luận, thời gian làm bài 90 phút, kỳ thi diễn ra ngày 18/12/2017, đề thi có đáp án và lời giải chi tiết . Trích dẫn đề thi HK1 Toán 11 : + Cho hình chóp S.ABCD có đáy ABCD là hình thang, đáy lớn AD. Khi đó giao tuyến của hai mặt phẳng (SAB) và (SCD) là: A. Đường thẳng SO với O là giao điểm của AC và BD. B. Đường thẳng đi qua S và song song AC. C. Đường thẳng đi qua S và song song BD. D. Đường thẳng SI với I là giao điểm của AB và CD. + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M là trung điểm của SC. 1. Tìm giao tuyến của hai mặt phẳng (SAC) và (SBD). 2. Chứng minh OM // (SAB). [ads] + Cho tứ diện ABCD. Gọi M, N, P lần lượt là trung điểm của AD, AB, CD. Khi đó giao điểm của BC với mặt phẳng (MNP) chính là: A. Trung điểm của AC. B. Trung điểm của BC. C. Giao điểm của MP và BC. D. Giao điểm của MN và CD.