Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phương pháp giải các dạng toán hàm số bậc nhất

Nội dung Phương pháp giải các dạng toán hàm số bậc nhất Bản PDF - Nội dung bài viết Phương pháp giải các dạng toán hàm số bậc nhất Phương pháp giải các dạng toán hàm số bậc nhất Để giúp học sinh lớp 9 hiểu rõ và áp dụng kiến thức về hàm số bậc nhất, tài liệu này tập trung vào việc nhắc lại các khái niệm cơ bản và hướng dẫn phương pháp giải các dạng toán phổ biến trong chương trình Toán lớp 9, phần Đại số chương 2. Bài 1 trình bày về những khái niệm cơ bản về hàm số, cung cấp kiến thức nền tảng cho việc giải các dạng toán tiếp theo. Bài 2 tập trung vào hàm số bậc nhất với các dạng bài cụ thể như tìm tập xác định, tính giá trị của hàm số, biểu diễn điểm trên mặt phẳng tọa độ, xác định tính đồng biến/nghịch biến của hàm số. Bài 3 là về đồ thị của hàm số y = ax + b, giúp học sinh hiểu rõ hơn về cách vẽ đồ thị, xác định điểm thuộc hoặc không thuộc đường thẳng, v.v. Bài 4 và 5 tập trung vào việc nhận dạng và xác định các đường thẳng song song, cắt nhau, hệ số góc của đường thẳng y = ax + b, giúp học sinh hiểu sâu hơn về mối quan hệ giữa các đường thẳng và hệ số góc. Chương cuối cùng là ôn tập chương II với các dạng bài khác nhau nhằm củng cố kiến thức và kỹ năng giải toán cho học sinh. Qua tài liệu này, học sinh sẽ có cơ hội nắm vững kiến thức hàm số bậc nhất và phát triển kỹ năng giải toán một cách tự tin và hiệu quả.

Nguồn: sytu.vn

Đọc Sách

Chuyên đề góc nội tiếp
Tài liệu gồm 51 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề góc nội tiếp, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 3 bài số 3. A. KIẾN THỨC TRỌNG TÂM Góc BAC có đỉnh A nằm trên đường tròn và hai cạnh AB, AC là hai dây cung được gọi là góc nội tiếp. Cung BC nằm bên trong được gọi là cung bị chắn. sdBAC = 1/2.sdBC (số đo của góc nội tiếp bằng nửa số đo của cung bị chắn). Tính chất: Trong một đường tròn: + Các góc nội tiếp bằng nhau thì chắn các cung bằng nhau. + Các góc nội tiếp cùng chắn một cung hoặc chắn các cung bằng nhau thì bằng nhau. + Góc nội tiếp (nhỏ hơn hoặc bằng 90°) có số đo bằng nửa số đo của góc ở tâm cùng chắn một cung. + Góc nội tiếp chắn nửa đường tròn là góc vuông. B. CÁC DẠNG BÀI MINH HỌA Dạng 1 : Chứng minh hai góc bằng nhau. Tính số đo góc. Dạng 2 : Tính độ dài, tính diện tích. Dạng 3 : Bài toán dựa vào hệ quả của góc nội tiếp chứng minh ba điểm thẳng hàng. Dạng 4 : Bài toán dựa vào định lí, tính chất góc nội tiếp chứng minh hai đường thẳng vuông góc. Dạng 5 : Nâng cao phát triển tư duy. C. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ D. BÀI TẬP TỰ LUYỆN
Chuyên đề liên hệ giữa cung và dây
Tài liệu gồm 12 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề liên hệ giữa cung và dây, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 3 bài số 2. I. TÓM TẮT LÝ THUYẾT 1. Định lí 1 Với hai cung nhỏ trong một đường tròn hay trong hai đường tròn bằng nhau: a) Hai cung bằng nhau căng hai dây bằng nhau. b) Hai dây bằng nhau căng hai cung bằng nhau. 2. Định lí 2 Với hai cung nhỏ trong một đường tròn hay trong hai đường tròn bằng nhau: a) Cung lớn hơn căng dây lớn hơn. b) Dây lớn hơn căng cung lớn hơn. 3. Bổ sung a) Trong một đường tròn, hai cung bị chắn giữa hai dây song song thì bằng nhau. b) Trong một đường tròn, đường kính đi qua điểm chính giữa của một cung thì đi qua trung điểm của dây căng cung ấy. Trong một đường tròn, đường kính đi qua trung điểm của một dây (không đi qua tâm) thì đi qua điểm chính giữa của cung bị căng bởi dây ấy. c) Trong một đường tròn, đường kính đi qua điểm chính giữa của một cung thì vuông góc với dây căng cung ấy và ngược lại. II. BÀI TẬP MINH HỌA Phương pháp giải: Để giải các bài toán liên quan đến cung và dây, cần nắm chắc định nghĩa góc ở tâm và kết hợp với sự liên hệ giữa cung và dây. III. BÀI TẬP TỰ LUYỆN
Chuyên đề góc ở tâm, số đo cung
Tài liệu gồm 09 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề góc ở tâm, số đo cung, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 3 bài số 1. I. TÓM TẮT LÝ THUYẾT 1. Góc ở tâm. 2. Số đo cung. 3. So sánh hai cung. 4. Định lí. II. BÀI TẬP MINH HỌA Phương pháp giải: Để tính số đo của góc ở tâm, số đo của cung bị chắn, ta sử dụng các kiến thức sau: + Số đo của cung nhỏ bằng số đo của góc ở tâm chắn cung đó. + Số đo của cung lớn bằng hiệu giữa 360 độ và số đo của cung nhỏ (có chung hai đầu mút với cung lớn). + Số đo của nửa đường tròn bằng 180 độ. + Cung cả đường tròn có số đo 360 độ. + Sử dụng tỉ số lượng giác của một góc nhọn để tính góc. + Sử dụng quan hệ đường kính và dây cung. III. PHIẾU BÀI TỰ LUYỆN
Chuyên đề vị trí tương đối của hai đường tròn
Tài liệu gồm 36 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề vị trí tương đối của hai đường tròn, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 2 bài số 7 và bài số 8. A. KIẾN THỨC TRỌNG TÂM 1. Tính chất của đường nối tâm. Đường nối tâm (đường thẳng đi qua tâm hai đường tròn) là trục đối xứng của hình tạo bởi hai đường tròn. Chú ý: + Nếu hai đường tròn tiếp xúc nhau thì tiếp điểm nằm trên đường nối tâm. + Nếu hai đường tròn cắt nhau thì đường nối tâm là đường trung trực của dây chung. 2. Liên hệ giữa vị trí của hai đường tròn với đoạn nối tâm d và các bán kính R và r. + Hai đường tròn cắt nhau. + Hai đường tròn tiếp xúc nhau: Tiếp xúc ngoài; Tiếp xúc trong. + Hai đường tròn không giao nhau: Ở ngoài nhau; (O) đựng (O’); (O) và (O’) đồng tâm. B. CÁC DẠNG BÀI MINH HỌA Dạng 1 : Nhận biết vị trí tương đối của hai đường tròn. Phương pháp giải: Áp dụng các kiến thức về vị trí tương đối của hai đường tròn liên quan đến trường hợp hai đường tròn. Dạng 2 : Bài tập về hai đường tròn cắt nhau. Phương pháp giải: Áp dụng các kiến thức về vị trí tương đối của hai đường tròn liên quan đến trường hợp hai đường tròn cắt nhau. Dạng 3 : Bài tập về hai đường tròn tiếp xúc. Phương pháp giải: Áp dụng các kiến thức về vị trí tương đối của hai đường tròn liên quan đến trường hợp hai đường tròn không cắt nhau. C. TRẮC NGHIỆM RÈN PHẢN XẠ D. BÀI TẬP TỰ LUYỆN