Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát lần 1 lớp 11 môn Toán năm 2023 2024 trường THPT chuyên Hùng Vương Phú Thọ

Nội dung Đề khảo sát lần 1 lớp 11 môn Toán năm 2023 2024 trường THPT chuyên Hùng Vương Phú Thọ Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề khảo sát chất lượng lần 1 môn Toán lớp 11 năm học 2023 – 2024 trường THPT chuyên Hùng Vương, tỉnh Phú Thọ; kỳ thi được diễn ra vào ngày 29 tháng 11 năm 2023; đề thi có đáp án trắc nghiệm mã đề 111 – 112 – 113 – 114. Trích dẫn Đề khảo sát lần 1 Toán lớp 11 năm 2023 – 2024 trường chuyên Hùng Vương – Phú Thọ : + Một phân xưởng may áo vest và quần âu để chuẩn bị cho dịp cuối năm. Biết may 1 áo vest hết 2m vải và cần 20 giờ; 1 quần âu hết 1,5m vải và cần 5 giờ. Xí nghiệp được giao sử dụng không quá 900m vải và số giờ công không vượt quá 6000 giờ. Theo khảo sát thị trường, số lượng quần bán ra không nhỏ hơn số lượng áo và không vượt quá 2 lần số lượng áo. Khi xuất ra thị trường, 1 chiếc áo lãi 350 nghìn đồng, 1 chiếc quần lãi 100 nghìn đồng. Tiền lãi cao nhất phân xưởng thu được dịp cuối năm đó là (biết thị trường tiêu thụ luôn đón nhận sản phẩm của xí nghiệp). + Trong các mệnh đề sau, mệnh đề nào đúng? A. Hai đường thẳng song song khi và chỉ khi chúng ở trên cùng một mặt phẳng. B. Hai đường thẳng chéo nhau khi và chỉ khi chúng không có điểm chung. C. Hai đường thẳng không có điểm chung là hai đường thẳng song song hoặc chéo nhau. D. Khi hai đường thẳng ở trên hai mặt phẳng thì hai đường thẳng đó chéo nhau. + Các bệnh truyền nhiễm có thể lây lan rất nhanh. Giả sử có 5 người bị bệnh trong tuần đầu tiên của một đợt dịch, và mỗi người bị bệnh sẽ lây bệnh cho bốn người vào cuối tuần tiếp theo. Tính đến hết tuần thứ 10 của đợt dịch, có bao nhiêu người đã bị lây bởi căn bệnh này? File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi Olympic lớp 11 môn Toán năm 2017 2018 cụm trường Thanh Xuân Cầu Giấy Hà Nội
Nội dung Đề thi Olympic lớp 11 môn Toán năm 2017 2018 cụm trường Thanh Xuân Cầu Giấy Hà Nội Bản PDF Đề thi Olympic Toán lớp 11 năm 2017 – 2018 cụm trường Thanh Xuân & Cầu Giấy – Hà Nội gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 150 phút, đề thi nhằm tuyển chọn các em học sinh giỏi môn Toán khối 11, đề thi có lời giải chi tiết . Trích dẫn đề thi Olympic Toán lớp 11 năm 2017 – 2018 : + Một đoàn tàu có 6 toa ở sân ga, trên sân ga có 6 hành khách chuẩn bị lên tàu, mỗi người độc lập với nhau và chọn toa tàu một cách ngẫu nhiên. a. Hỏi có bao nhiêu cách xếp 6 hành khách lên các toa tàu đó sao cho 6 người cùng lên một toa hoặc mỗi người lên một toa khác nhau? b. Tính xác suất sao cho một toa có 3 hành khách, một toa có 2 hành khách, 1 toa có 1 hành khách, còn 3 toa còn lại không có ai lên. [ads] + Biết rằng các số x, 2y – x, x + 2y theo thứ tự lập thành cấp số cộng. Đồng thời các số 1, y – 1, x + 2y – 1 theo thứ tự lập thành cấp số nhân. Hãy tìm x, y. + Xét khai triển (x + 1/x)^n (x ≠ 0, n ≥ 3, n ∈ N*). Biết tích của số hạng thứ tư tính từ phải sang và số hạng thứ tư kể từ trái sang bằng 14400. Tìm n.
Đề thi chọn HSG lớp 11 môn Toán cấp tỉnh năm học 2017 2018 sở GD và ĐT Thanh Hóa
Nội dung Đề thi chọn HSG lớp 11 môn Toán cấp tỉnh năm học 2017 2018 sở GD và ĐT Thanh Hóa Bản PDF Đề thi chọn HSG Toán lớp 11 cấp tỉnh năm học 2017 – 2018 sở GD và ĐT Thanh Hóa gồm 1 trang với 5 bài toán tự luận, thang điểm 20, thời gian làm bài 180 phút (không kể thời gian giao đề), kỳ thi được tổ chức vào ngày 09 tháng 3 năm 2018, đề thi HSG Toán lớp 11 có lời giải chi tiết . Trích dẫn đề thi chọn HSG Toán lớp 11 : + Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình bình hành. Một điểm M di động trên cạnh đáy BC (M khác B, C). Mặt phẳng (α) đi qua M đồng thời song song với hai đường thẳng SB và AC. Xác định thiết diện của hình chóp S.ABCD cắt bởi (α) và tìm vị trí của điểm M để thiết diện đó có diện tích lớn nhất. + Xếp ngẫu nhiên 10 học sinh gồm 2 học sinh của lớp 11A, 3 học sinh của lớp 11B và 5 học sinh của lớp 11C thành một hàng ngang. Tính xác suất để không có học sinh của cùng một lớp đứng cạnh nhau. [ads] + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC vuông cân tại A. Các điểm M, N lần lượt thuộc các cạnh AB, AC sao cho AM = AN (M, N không trùng với các đỉnh của tam giác). Đường thẳng d1 đi qua A và vuông góc với BN cắt cạnh BC tại H(6/5; -2/3), đường thẳng d2 đi qua M và vuông góc với BN cắt cạnh BC tại K(2/5; 2/3). Tìm tọa độ các đỉnh của tam giác ABC, biết rằng đỉnh A thuộc đường thẳng Δ: 5x + 3y + 13 = 0 và có hoành độ dương.
Đề thi học sinh giỏi lớp 11 môn Toán cấp tỉnh năm 2017 2018 sở GD ĐT Lai Châu
Nội dung Đề thi học sinh giỏi lớp 11 môn Toán cấp tỉnh năm 2017 2018 sở GD ĐT Lai Châu Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi môn Toán lớp 11 cấp tỉnh năm học 2017 – 2018 sở Giáo dục và Đào tạo UBND tỉnh Lai Châu; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học sinh giỏi Toán lớp 11 cấp tỉnh năm 2017 – 2018 sở GD&ĐT Lai Châu : + Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật và SA vuông góc với mặt phẳng (ABCD). Biết AB a BC a 3 và SD a 5. Đường thẳng qua A vuông góc với AC cắt các đường thẳng CB CD lần lượt tại I J. Gọi H là hình chiếu vuông góc của A trên SC. Gọi K L là giao điểm của SB SD với (HIJ) a. Chứng minh rằng AK SBC. b. Tính khoảng cách từ điểm B đến (HIJ). + Trên một đường thẳng có n điểm màu xanh và n điểm màu đỏ. Chứng minh rằng tổng tất cả các khoảng cách giữa các cặp điểm cùng màu bé hơn hoặc bằng tổng tất cả các khoảng cách giữa các cặp điểm khác màu. + Cho dãy số (un) xác định bởi 1 n u và 2 1 1 n n n u u với n = 1, 2, 3 … Tính giới hạn lim n n u +∞.