Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán THPTQG 2020 lần 1 trường THPT Hoàng Lê Kha - Thanh Hóa

Chỉ còn khoảng 03 tháng nữa, kỳ thi THPT Quốc gia môn Toán do Bộ Giáo dục và Đào tạo tổ chức sẽ chính thức diễn ra. giới thiệu đến các em học sinh khối 12 nội dung đề thi và lời giải chi tiết đề thi thử Toán THPTQG 2020 lần 1 trường THPT Hoàng Lê Kha – Thanh Hóa, hi vọng sẽ giúp ích cho các em trong quá trình ôn tập, chuẩn bị kiến thức. Trích dẫn đề thi thử Toán THPTQG 2020 lần 1 trường THPT Hoàng Lê Kha – Thanh Hóa : + Cho một tấm nhôm hình vuông cạnh 1 m như hình vẽ dưới đây. Người ta cắt phần tô đậm của tấm nhôm rồi gấp thành một hình chóp tứ giác đều có cạnh đáy bằng x m, sao cho bốn đỉnh của hình vuông gập thành đỉnh của hình chóp. Tìm x để khối chóp nhận được có thể tích lớn nhất. + Ông An muốn xây một cái bể chứa nước lớn dạng khối hộp chữ nhật không nắp với thể tích 288 m3. Đáy bể là hình chữ nhật có chiều dài gấp đôi chiều rộng, giá thuê nhân công để xây bể là 500000 đồng/m2. Nếu ông An biết xác định các kích thước của bể hợp lí thì chi phí thuê nhân công sẽ thấp nhất. Hỏi ông An trả chi phí thấp nhất để xây dựng bể đó là bao nhiêu? [ads] + Trong một hình tứ diện ta tô màu các đỉnh, trung điểm các cạnh, trọng tâm các mặt và trọng tâm tứ diện. Chọn ngẫu nhiên 4 điểm trong số các điểm đã tô màu, tính xác suất để 4 điểm được chọn là bốn đỉnh của một tứ diện. + Cho hàm số y = x^4 – 4x^2 + 3. Mệnh đề nào sau đây sai? A. Hàm số đã cho là hàm số chẵn. B. Hàm số chỉ có một điểm cực trị. C. Đồ thị của hàm số nhận trục tung làm trục đối xứng. D. Các điểm cực trị của đồ thị hàm số tạo thành một tam giác cân. + Cho hàm số y = (x + 1)/(x – 2). Số các giá trị của tham số m để đường thẳng y = x + m luôn cắt đồ thị hàm số tại hai điểm phân biệt A và B sao cho trọng tâm tam giác OAB nằm trên đường tròn x^2 + y^2 – 3y = 4.

Nguồn: toanmath.com

Đọc Sách

Đề thi thử tốt nghiệp THPT năm 2024 môn Toán sở GDĐT Hà Tĩnh
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp Trung học Phổ thông năm 2024 môn Toán sở Giáo dục và Đào tạo tỉnh Hà Tĩnh; đề thi có đáp án trắc nghiệm mã đề 001 – 002 – 003 – 004 – 005 – 006 – 007 – 008 và hướng dẫn giải chi tiết các bài toán vận dụng – vận dụng cao. Trích dẫn Đề thi thử tốt nghiệp THPT năm 2024 môn Toán sở GD&ĐT Hà Tĩnh : + Trong không gian Oxyz, cho mặt cầu (S): (x − 1)2 + (y − 2)2 + (z − 3)2 = 9 và điểm A (0; 1; −2). Từ A kẻ các tiếp tuyến đến (S) với các tiếp điểm thuộc đường tròn (C1). Từ điểm M di động nằm ngoài (S) và nằm trong mặt phẳng chứa đường tròn (C1) kẻ các tiếp tuyến đến (S) với các tiếp điểm thuộc đường tròn (C2). Biết rằng nếu (C1) và (C2) có cùng bán kính thì M luôn thuộc một đường tròn cố định. Bán kính r của đường tròn đó bằng? + Một bông hoa tai bằng vàng có dạng xích nối như hình vẽ. Biết phía trên là hình trụ có thiết diện qua trục là một hình vuông cạnh 1cm. Phía dưới là 3 quả cầu nối tiếp nhau sao cho chiều cao hình trụ và đường kính của chúng theo thứ tự tạo thành cấp số nhân với công bội q = 2. (Giả sử phần dây nối có thể tích không đáng kể). Tính thể tích bông hoa tai? + Trong không gian Oxyz, cho hình chóp S.ABCD có A (0; 0; 0), B (2; 0; 0), C (2; 2; 0), D (0; 2; 0), S (0; 0; 2). Gọi G là trọng tâm tam giác SAC, M là điểm thuộc miền trong của tứ giác ABCD sao cho tia MG cắt mặt bên SAB của hình chóp tại N. Khi biểu thức Q = MG NG + NG MG đạt giá trị nhỏ nhất thì điểm M chạy trên một đoạn thẳng, đường thẳng chứa đoạn thẳng đó đi qua điểm nào sau đây?
Đề thi thử Toán tốt nghiệp THPT 2024 lần 2 trường THPT Đặng Thúc Hứa - Nghệ An
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử môn Toán tốt nghiệp THPT năm 2024 lần 2 trường THPT Đặng Thúc Hứa, tỉnh Nghệ An; đề thi có đáp án trắc nghiệm mã đề 101 – 102. Trích dẫn Đề thi thử Toán tốt nghiệp THPT 2024 lần 2 trường THPT Đặng Thúc Hứa – Nghệ An : + Một vật trang trí có dạng khối tròn xoay tạo thành khi quay miền R được giới hạn bởi đường gấp khúc DABFE và cung tròn ED (phần gạch chéo trong hình bên) xung quanh trục AB. Biết ABCD là hình chữ nhật cạnh AB 3cm AD 2cm F là trung điểm của BC; điểm E cách AD một đoạn bằng 1cm. Tính thể tích của vật trang trí đó, làm tròn kết quả đến hàng phần mười. + Cho hình lăng trụ ABCA B C có đáy là tam giác đều cạnh a. Hình chiếu vuông góc của A lên mặt phẳng ABC trùng với trọng tâm G tam giác ABC. Biết khoảng cách từ điểm G đến đường thẳng AA bằng a 3 6. Thể tích của khối lăng trụ ABCA B C bằng? + Xét các số phức zw thỏa mãn z 1 z w 2 và số phức z w có phần ảo bằng 2. Giá trị lớn nhất của biểu thức z w 1 2i có dạng a b với a là số nguyên và b là số nguyên tố. Tích ab bằng?
Đề thi thử Toán tốt nghiệp THPT 2024 lần 2 trường THPT Thủy Sơn - Hải Phòng
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử môn Toán tốt nghiệp THPT năm học 2023 – 2024 lần 2 trường THPT Thủy Sơn, thành phố Hải Phòng; đề thi có đáp án trắc nghiệm mã đề 000 132 256 374 415 528 625 743 854. Trích dẫn Đề thi thử Toán tốt nghiệp THPT 2024 lần 2 trường THPT Thủy Sơn – Hải Phòng : + Một téc nước hình trụ, đang chứa nước được đặt nằm ngang, có chiều dài 3m và đường kính đáy 1m. Hiện tại nước trong téc cách phía trên đỉnh của téc 0, 25m (xem hình vẽ). Tính thể tích của nước trong téc (kết quả làm tròn đến hàng phần nghìn)? + Trong không gian Oxyz cho mặt phẳng 2 5 0 P xyz và đường thẳng 332 xyz d. Biết rằng trong mặt phẳng P có hai đường thẳng 1 2 d cùng đi qua điểm A(3;-1;0) và cùng cách đường thẳng d một khoảng bằng 3. Tính sinϕ với ϕ là góc giữa hai đường thẳng 1 2 d? + Cho hàm số bậc ba y fx có đồ thị là đường cong trong hình bên dưới với f (1 0) và 2 20. Biết hàm số f x đạt cực trị tại hai điểm 1 2 x thỏa mãn 2 1 x. Gọi 1 S và 2 S là diện tích của hai hình phẳng được gạch trong hình bên dưới. Tỉ số 1 2 S S thuộc khoảng nào dưới đây?
Đề thi thử TN THPT 2024 lần 1 môn Toán trường THPT Kẻ Sặt - Hải Dương
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm học 2023 – 2024 lần 1 môn Toán trường THPT Kẻ Sặt, tỉnh Hải Dương; đề thi có đáp án trắc nghiệm mã đề 201 – 202. Trích dẫn Đề thi thử TN THPT 2024 lần 1 môn Toán trường THPT Kẻ Sặt – Hải Dương : + Cho hình nón có chiều cao h = 20, bán kính đáy r = 25. Một thiết diện đi qua đỉnh của hình nón có khoảng cách từ tâm của đáy đến mặt phẳng chứa thiết diện là 12. Tính diện tích S của thiết diện đó. + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với đáy ABCD, góc giữa hai mặt phẳng SBD và ABCD bằng 0 60. Gọi M N lần lượt là trung điểm của SB SC. Tính thể tích khối chóp S.ADNM. + Khối chóp S.ABCD có A, B, C, D cố định và S chạy trên đường thẳng song song với AC. Khi đó thể tích khối chóp S.ABCD sẽ: A. Tăng gấp đôi. B. Giữ nguyên. C. Tăng gấp bốn. D. Giảm phân nửa.