Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài tập mũ và lôgarit vận dụng cao có lời giải chi tiết - Nguyễn Xuân Chung

Tài liệu gồm có 56 trang được tổng hợp và biên soạn bởi thầy giáo Nguyễn Xuân Chung, chọn lọc các câu hỏi và bài tập trắc nghiệm chủ đề mũ và lôgarit vận dụng cao (cách gọi khác: mũ và lôgarit nâng cao, mũ và lôgarit khó, mũ và lôgarit VDC …) có đáp án, lời giải chi tiết và bình luận sau bài toán, giúp bạn đọc hiểu được hướng tư duy, tiếp cận và giải quyết bài toán; phần lời giải chi tiết được trình bày ngắn gọn, có hướng dẫn sử dụng máy tính cầm tay Casio – Vinacal để giải nhanh; tài liệu giúp học sinh giải quyết tốt các bài toán khó trong chương trình Giải tích 12 và ôn thi THPT Quốc gia môn Toán. Nội dung tài liệu bài tập mũ và lôgarit vận dụng cao có lời giải chi tiết – Nguyễn Xuân Chung được tác giả chia thành ba phần: phần thứ nhất gồm các câu hỏi và bài tập được trích từ các đề thi THPT Quốc gia môn Toán chính thức, các đề minh họa, đề tham khảo THPT Quốc gia môn Toán của Bộ Giáo dục và Đào tạo trong những năm gần đây; phần thứ hai gồm các câu hỏi và bài tập được trích từ các đề thi thử THPT Quốc gia môn Toán của các trường THPT và sở GD&ĐT trên cả nước; phần thứ ba gồm một số câu hỏi và bài tập tương tự giúp học sinh rèn luyện thêm. [ads] Trích dẫn tài liệu bài tập mũ và lôgarit vận dụng cao có lời giải chi tiết – Nguyễn Xuân Chung: + Cho phương trình 2^x = √(m.2^x.cos(pi.x) – 4) với m là tham số thực. Gọi m0 là giá trị của m để phương trình đã cho có đúng 1 nghiệm thực. Mệnh đề nào sau đây đúng? + Cho hai số thực dương x và y thỏa mãn điều kiện: 3 + ln((x + y + 1)/3xy) = 9xy – 3x – 3y. Giá trị nhỏ nhất của biểu thức P = xy là? + Cho hàm số y = f(x) liên tục trên R và có đồ thị như hình vẽ dưới đây. Có bao nhiêu giá trị nguyên của m để phương trình f(2log_2 x) = m có nghiệm duy nhất trên [1/2;2). + Đồ thị hàm số y = f(x) đối xứng với đồ thị của hàm số y = a^x (a > 0 và a khác 1) qua điểm I(1;1). Giá trị của biểu thức f(2 + log_a 1/2018) bằng? + Đây là bài toán khó vì số mũ của lũy thừa là biểu thức phức tạp. Nếu để nguyên để khảo sát thì gặp khó khăn lớn khi phải đạo hàm và tìm nghiệm, rồi còn phải lập bảng biến thiên … do đó gặp tình huống này thì chúng ta nghĩ đến phương pháp đánh giá để giảm độ phức tạp. Nói như vậy: phương pháp đạo hàm là công cụ mạnh để giải toán hàm số, nhưng trong trường hợp này chưa chắc tỏ ra là “mạnh”. Bài toán trên là thi Olimpic hay sao nhỉ? Ra đề thi kiểu như vậy thì bó tay!

Nguồn: toanmath.com

Đọc Sách

Lý thuyết và bài tập trắc nghiệm số phức - Phùng Hoàng Em
Tài liệu gồm 30 trang tóm tắt lý thuyết số phức và tuyển chọn các bài tập trắc nghiệm số phức có đáp án giúp học sinh học tốt chương trình Giải tích 12 chương 4 và ôn tập thi THPT Quốc gia môn Toán, tài liệu được biên soạn bởi thầy Phùng Hoàng Em. BÀI 1 . NHẬP MÔN SỐ PHỨC Vấn đề 1 . Xác định các đại lượng liên quan đến số phức. 1. Biến đổi số phức z về dạng A + Bi. 2. Khi đó: phần thực là A, phần ảo là B, số phức liên hợp là A + Bi = A − Bi, mô-đun bằng √(A^2 +B^2). Vấn đề 2 . Số phức bằng nhau. a + bi = c + di ⇔ a = c và b = d. a + bi = 0 ⇔ a = 0 và b = 0. Vấn đề 3 . Điểm biểu diễn số phức. Mỗi số phức z = a + bi được biểu diễn bởi duy nhất một điểm M(a,b) trên mặt phẳng tọa độ. Vấn đề 4 . Lũy thừa với đơn vị ảo. Các công thức biến đổi: i2 = −1, i3 = −i, in = 1 nếu n chia hết cho 4, in = i nếu n chia 4 dư 1, in = −1 nếu n chia 4 dư 2, in = −i nếu n chia 4 dư 3. Tổng n số hạng đầu của một cấp số cộng: Sn = n/2(u1 + un) hoặc Sn = n/2(2u1 + (n − 1)d), với u1 là số hạng đầu, d là công sai. Tổng n số hạng đầu của một cấp số nhân: Sn = u1.(1 − qn)/(1 − q), với u1 là số hạng đầu, q là công bội (q khác 1). [ads] BÀI 2 . PHƯƠNG TRÌNH VÀ HỆ PHƯƠNG TRÌNH Vấn đề 1 . Phương trình với hệ số phức. Trong chương trình, ta chỉ xét phương trình dạng này với ẩn z bậc nhất. + Ta giải tương tự như giải phương trình bậc nhất trên tập số thực. + Thực hiện các biến đổi đưa về dạng z = A + Bi. Vấn đề 2 . Phương trình bậc hai với hệ số thực và một số phương trình quy về bậc hai. Xét phương trình ax2 + bx + c = 0, với a, b, c ∈ R và a khác 0. Đặt ∆ = b2 − 4ac, khi đó: 1. Nếu ∆ ≥ 0 thì phương trình có nghiệm x = (−b ±√∆)/2a. 2. Nếu ∆ < 0 thì phương trình có nghiệm x = (−b ± i√|∆|)/2a. 3. Định lý Viet: x1 + x2 = −b/a và x1.x2 = c/a. Vấn đề 3 . Xác định số phức bằng cách giải hệ phương trình. Gọi z = a + bi, với a, b ∈ R. + Nếu đề bài cho dạng hai số phức bằng nhau, ta áp dụng một trong hai công thức sau: a + bi = c + di ⇔ a = c hay b = d, a + bi = 0 ⇔ a = 0 hay b = 0. + Nếu đề bài cho phương trình ẩn z và kèm theo một trong các ẩn z, |z| … Ta thay z = a + bi vào điều kiện đề cho, đưa về “hai số phức bằng nhau”. + Nếu đề cho z thỏa hai điều kiện riêng biệt thì từ 2 điều kiện đó, ta tìm được hệ phương trình liên quan đến a, b. Giải tìm a, b. BÀI 3 . BIỄU DIỄN HÌNH HỌC CỦA SỐ PHỨC Vấn đề . Biễu diễn hình học của số phức. Trong mặt phẳng toạ độ Oxy, giả sử: M(x;y) là điểm biểu diễn của z = x + yi (x, y ∈ R), N(x’;y’) là điểm biểu diễn của z’ = x’ + y’i (x’, y’ ∈ R), I(a;b) là điểm biểu diễn của z0 = a + bi cho trước (a, b ∈ R). Khi đó, ta có các kết quả sau: + |z| = √(x^2 + y^2) = OM (khoảng cách từ điểm M đến gốc toạ độ O). + |z – z’| = √(x’ – x)2(y’ – y)2 = MN (khoảng cách giữa M và N). + |z – z0| ≤ R ⇔ (x – a)^2 + (y – b)^2 ≤ R^2: hình tròn tâm I(a; b), bán kính R. + |z – z0| = R ⇔ (x – a)^2 + (y – b)^2 = R^2: đường tròn tâm I(a; b), bán kính R.
936 bài tập trắc nghiệm số phức
giới thiệu thiệu đến thầy, cô và các em học sinh khối 12 tài liệu tuyển tập 936 bài tập trắc nghiệm số phức ôn thi THPT Quốc gia môn Toán, tài liệu gồm 266 trang gồm 453 câu hỏi số phức và các phép toán, 256 câu phương trình và các bài tập tìm số phức thỏa mãn điều kiện, 227 câu biểu diễn hình học của số phức, tìm tập hợp điểm. Mục lục tài liệu 936 bài tập trắc nghiệm số phức: Phần 1 . Tóm tắt lý thuyết. Phần 2 . Số phức và các phép toán (453 câu). A – Bài tập (260 câu). B – Hướng dẫn giải. C – Bài tập tự luyện (193 câu). [ads] Phần 3 . Phương trình và các bài tập tìm số phức thỏa mãn điều kiện (256 câu). A – Bài tập (130 câu). B – Hướng dẫn giải. C – Bài tập tự luyện (126 câu). Phần 4 . Biểu diễn hình học của số phức, tìm tập hợp điểm (227 câu). A – Bài tập (138 câu). B – Hướng dẫn giải. C – Bài tập tự luyện (89 câu). Trong mỗi phần đều bao gồm các bài tập trắc nghiệm số phức có đáp án và lời giải chi tiết, nhằm giúp các em học sinh nắm được phương pháp, kỹ năng giải toán số phức, và phần bài tập trắc nghiệm số phức tự luyện, giúp các em tự kiểm tra lại các kiến thức đã tiếp thu được. Tài liệu còn hướng dẫn sử dụng máy tính cầm tay Casio – Vinacal để giải nhanh một số bài tập trắc nghiệm số phức.
Bài tập trắc nghiệm số phức có đáp án - Nguyễn Hữu Nhanh Tiến
Tài liệu gồm 12 được biên soạn bởi thầy Nguyễn Hữu Nhanh Tiến tổng hợp 99 bài toán trắc nghiệm số phức có đáp án trong chương trình Giải tích 12 chương 4, các bài toán được phân dạng và tuyển chọn từ các đề thi thử môn Toán 2018. Các dạng toán trong tài liệu : 1. KHÁI NIỆM SỐ PHỨC 1.1. Xác định các yếu tố cơ bản của số phức 1.2. Biểu diễn hình học của số phức cơ bản 2. PHÉP CỘNG, TRỪ VÀ NHÂN SỐ PHỨC 2.1. Thực hiện phép tính 2.2. Xác định các yếu tố cơ bản qua các phép tính 2.3. Bài toán quy về phương trình, hệ phương trình nghiệm thực 2.4. Bài toán tập hợp điểm [ads] 3. PHÉP CHIA SỐ PHỨC 3.1. Xác định các yếu tố cơ bản qua các phép tính 3.2. Bài toán quy về phương trình, hệ phương trình nghiệm thực 3.3. Bài toán tập hợp điểm 4. PHƯƠNG TRÌNH BẬC HAI HỆ SỐ THỰC 4.1. Giải phương trình 4.2. Tính toán biểu thức nghiệm 5. CỰC TRỊ CỦA SỐ PHỨC
Bài tập trắc nghiệm số phức có đáp án
Tài liệu gồm 99 trang tuyển chọn các bài tập trắc nghiệm số phức có đáp án thuộc chương trình Giải tích 12 chương 4, tài liệu được biên soạn bởi các tác giả: Nguyễn Ngọc Dũng, Tạ Nguyễn Đình Đăng, Vương Phú Quý, Nguyễn Viết Sinh, Nguyễn Cao Đẳng. Các bài tập trắc nghiệm số phức trong tài liệu được phân loại thành 5 dạng bài: §1. Định nghĩa số phức, các yếu tố của số phức §2. Các phép toán trên tập số phức §3. Phương trình – Hệ phương trình §4. Tập hợp điểm biểu diễn số phức – Dạng lượng giác của số phức §5. Các bài toán cực trị [ads] Xem thêm tài liệu cùng nhóm tác giả: + Bài tập trắc nghiệm nguyên hàm, tích phân và ứng dụng có đáp án (Giải tích 12 chương 3) + Bài tập trắc nghiệm phương pháp tọa độ trong không gian có đáp án (Hình học 12 chương 3)