Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề hình chữ nhật

Tài liệu gồm 31 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề hình chữ nhật, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 1: Tứ giác. I. TÓM TẮT LÝ THUYẾT Định nghĩa: Hình chữ nhật là tứ giác có bốn góc vuông. Tính chất: + Hình chữ nhật có tất cả các tính chất của hình bình hành. + Hình chữ nhật có tất cả các tính chất của hình thang cân. + Trong hình chữ nhật, hai đường chéo bằng nhau và cắt nhau tại trung điểm mỗi đường. Dấu hiệu nhận biết: + Tứ giác có ba góc vuông là hình chữ nhật. + Hình thang cân có một góc vuông là hình chữ nhật. + Hình bình hành có một góc vuông là hình chữ nhật. + Hình bình hành có hai đường chéo bằng nhau là hình chữ nhật. Áp dụng vào tam giác vuông: + Trong tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền. + Nếu một tam giác có đường trung tuyến ứng với một cạnh bằng nửa cạnh ấy thì tam giác đó là tam giác vuông. II. BÀI TẬP VÀ CÁC DẠNG TOÁN A. CÁC DẠNG BÀI MINH HỌA CB – NC + Dạng 1: Chứng minh tứ giác là hình chữ nhật. Phương pháp giải: Vận dụng các dấu hiệu nhận biết để chứng minh một tứ giác là hình chữ nhật. + Dạng 2: Áp dụng tính chất hình chữ nhật để chứng minh các tính chất hình học. Phương pháp giải: Vận dụng định nghĩa và các tính chất về cạnh, góc và đường chéo của hình chữ nhật. + Dạng 3: Vận dụng định lý thuận và định lý đảo của đường trung tuyến ứng với cạnh huyền của tam giác vuông. Phương pháp giải: Sử dụng định lí về tính chất đường trung tuyến ứng với cạnh huyền cả tam giác vuông để chứng minh các hình bằng nhau hoặc chứng minh tam giác vuông. + Dạng 4: Tìm điều kiện để tứ giác là hình chữ nhật. Phương pháp giải: Vận dụng định nghĩa, các tính chất và dấu hiệu nhận biết của hình chữ nhật. B. DẠNG BÀI NÂNG CAO VÀ PHÁT TRIỂN TƯ DUY + Tính chất và dấu hiệu nhận biết của hình chữ nhật. + Tính chất đường trung tuyến của tam giác vuông. + Đường thẳng song song với một đường thẳng cho trước. C. PHIẾU TỰ LUYỆN CƠ BẢN VÀ NÂNG CAO + Dạng 1. Chứng minh tứ giác là hình chữ nhật. + Dạng 2. Vận dụng tính chất của hình chữ nhật để chứng minh các tính chất hình học. + Dạng 3. Sử dụng định lí thuận và đảo của đường trung tuyến ứng với cạnh huyền của tam giác vuông. + Dạng 4. Tìm điều kiện để tứ giác là hình chữ nhật. + Dạng 5. Tổng hợp.

Nguồn: toanmath.com

Đọc Sách

Lý thuyết, các dạng toán và bài tập tam giác đồng dạng
Nội dung Lý thuyết, các dạng toán và bài tập tam giác đồng dạng Bản PDF - Nội dung bài viết 48 trang tài liệu về lý thuyết, các dạng toán và bài tập tam giác đồng dạng cho học sinh lớp 8 48 trang tài liệu về lý thuyết, các dạng toán và bài tập tam giác đồng dạng cho học sinh lớp 8 Tài liệu này bao gồm 48 trang tóm tắt về lý thuyết, các dạng toán và bài tập liên quan đến tam giác đồng dạng. Đây là tài liệu hữu ích giúp học sinh lớp 8 nắm vững kiến thức khi học chương trình. Các dạng toán và bài tập được trình bày cụ thể và dễ hiểu, giúp học sinh thực hành và rèn luyện kỹ năng giải toán một cách hiệu quả. Tài liệu còn giúp học sinh áp dụng lý thuyết vào thực hành, rèn luyện khả năng vận dụng kiến thức vào giải quyết vấn đề. Với nội dung đa dạng và phong phú, tài liệu này sẽ là nguồn thông tin hữu ích để học sinh tự học và ôn tập.
Lý thuyết, các dạng toán và bài tập bất phương trình bậc nhất một ẩn
Nội dung Lý thuyết, các dạng toán và bài tập bất phương trình bậc nhất một ẩn Bản PDF - Nội dung bài viết Tài liệu học toán Bất phương trình bậc nhất một ẩn Tài liệu học toán Bất phương trình bậc nhất một ẩn Tài liệu này gồm tổng cộng 37 trang, cung cấp tóm tắt về lý thuyết, các dạng toán và bài tập liên quan đến bất phương trình bậc nhất một ẩn. Được thiết kế để hỗ trợ học sinh lớp 8 khi học chương trình toán học. Không chỉ giúp học sinh hiểu rõ lý thuyết mà còn cung cấp các bài tập thực hành giúp củng cố kiến thức và kỹ năng tính toán. Tài liệu này là nguồn tài liệu hữu ích giúp học sinh nắm vững và tự tin hơn khi giải các dạng toán bất phương trình bậc nhất một ẩn.
Lý thuyết, các dạng toán và bài tập phương trình bậc nhất một ẩn
Nội dung Lý thuyết, các dạng toán và bài tập phương trình bậc nhất một ẩn Bản PDF - Nội dung bài viết Lý thuyết, các dạng toán và bài tập phương trình bậc nhất một ẩn Lý thuyết, các dạng toán và bài tập phương trình bậc nhất một ẩn Tài liệu này bao gồm 43 trang, cung cấp tóm tắt lý thuyết, các dạng toán và bài tập về phương trình bậc nhất một ẩn, nhằm hỗ trợ học sinh lớp 8 trong quá trình học tập chương trình Toán lớp 8 (tập 2) phần Đại số chương 3. Trang 1: Mở đầu về phương trình. Trang 2: Phương trình bậc nhất một ẩn và cách giải. Các dạng bao gồm: Xét x = a có là nghiệm của phương trình không? Xét hai phương trình có tương đương nhau không? Nhận dạng phương trình bậc nhất một ẩn số. Giải phương trình bậc nhất. Trang 3: Phương trình đưa được về dạng ax + b = 0. Các dạng bao gồm: Tìm chỗ sai và sửa lại các bài giảng phương trình. Giải phương trình. Giải bài toán bằng cách lập phương trình. Đây là tài liệu cung cấp kiến thức cơ bản và bài tập thực hành giúp học sinh hiểu rõ hơn về phương trình bậc nhất một ẩn, từ đó cải thiện kỹ năng giải toán và nắm vững nội dung môn Toán lớp 8.
Lý thuyết, các dạng toán và bài tập đa giác và diện tích đa giác
Nội dung Lý thuyết, các dạng toán và bài tập đa giác và diện tích đa giác Bản PDF - Nội dung bài viết Hướng dẫn toán học đa giác và diện tích đa giác Hướng dẫn toán học đa giác và diện tích đa giác Bạn đang cần tìm hiểu về lý thuyết, các dạng toán và bài tập liên quan đến đa giác và diện tích đa giác? Vậy thì tài liệu này chính là điểm đến lý tưởng dành cho bạn! Với 33 trang nội dung chi tiết, tóm tắt lý thuyết, các dạng toán và bài tập thực hành, bạn sẽ có được kiến thức cần thiết để giải quyết các bài toán trong chương trình học của mình. Tài liệu được thiết kế dành riêng cho học sinh lớp 8, giúp họ nắm vững kiến thức và áp dụng vào thực hành một cách hiệu quả. Đồng thời, việc phân tích chi tiết và cụ thể trong tài liệu cũng giúp bạn hiểu rõ hơn về các khái niệm cơ bản liên quan đến đa giác và diện tích đa giác. Nhấn mạnh vào việc thực hành thông qua bài tập, tài liệu này sẽ giúp bạn rèn luyện kỹ năng giải quyết bài toán, tăng cường khả năng tư duy logic và logic. Hãy sử dụng tài liệu này như một công cụ hữu ích để nâng cao kiến thức toán học của mình!