Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi huyện lớp 8 môn Toán năm 2016 2017 phòng GD ĐT Thạch Hà Hà Tĩnh

Nội dung Đề thi học sinh giỏi huyện lớp 8 môn Toán năm 2016 2017 phòng GD ĐT Thạch Hà Hà Tĩnh Bản PDF - Nội dung bài viết Đề thi học sinh giỏi huyện lớp 8 môn Toán năm 2016-2017 phòng GD ĐT Thạch Hà Hà Tĩnh Đề thi học sinh giỏi huyện lớp 8 môn Toán năm 2016-2017 phòng GD ĐT Thạch Hà Hà Tĩnh Chào các thầy cô và các em học sinh lớp 8, dưới đây là đề thi học sinh giỏi huyện Toán lớp 8 năm 2016-2017 của phòng GD&ĐT Thạch Hà - Hà Tĩnh. Đề thi bao gồm đáp án, lời giải và thang điểm. Mời các bạn cùng tham gia! 1. Giải vô địch bóng đá quốc gia Việt Nam 2016-2017 có 14 đội tham gia. Mỗi đội phải thi đấu với các đội còn lại 1 trận ở sân nhà và 1 trận ở sân khách. Kết thúc mùa giải có tổng cộng bao nhiêu trận đấu? 2. Trong 1 hộp có 60 viên bi màu, trong đó có 25 bi màu đỏ, 20 bi màu xanh, và 15 bi màu vàng. Cần lấy ra ít nhất bao nhiêu viên bi (mà không cần nhìn vào hộp) để có ít nhất 3 viên bi khác màu? 3. Cho một lưới ô vuông kích thước 5x5 ô. Mỗi ô được điền một trong các số -1, 0, 1. Xét tổng của các số theo từng cột, từng hàng và từng hàng chéo. Hãy chứng minh rằng trong tất cả các tổng đó luôn tồn tại hai tổng có giá trị bằng nhau.

Nguồn: sytu.vn

Đọc Sách

Đề thi HSG huyện Toán 8 năm 2022 - 2023 phòng GDĐT Bình Giang - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp huyện môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Bình Giang, tỉnh Hải Dương; đề thi hình thức tự luận với 05 bài toán, thời gian làm bài 120 phút, đề bài gồm 01 trang; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề thi HSG huyện Toán 8 năm 2022 – 2023 phòng GD&ĐT Bình Giang – Hải Dương : + Phân tích đa thức sau thành nhân tử: x5 + x3 + x. Cho đa thức 432 Px x x x b ax và 2 Qx x x 2. Tìm a và b để đa thức P(x) chia hết cho đa thức Q(x). + Cho biểu thức: 3 22 2 x x B. Tìm x để biểu thức B xác định rồi rút gọn biểu thức. Chứng tỏ rằng với mọi số nguyên a, b thì 3 3 M a b ab chia hết cho 6. + Cho tam giác ABC nhọn, ba đường cao AD, BE, CF đồng quy tại H 1) Chứng minh: Tam giác AEF đồng dạng với tam giác ABC 2) Gọi K là giao điểm của AD và EF. Chứng minh: H là giao điểm ba đường phân giác trong tam giác DEF và HK.AD = AK.DH 3) Giả sử SAEF = SBFD = SCDE. Chứng minh tam giác ABC đều.
Đề thi HSG huyện Toán 8 năm 2022 - 2023 phòng GDĐT Tam Dương - Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp huyện môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Tam Dương, tỉnh Vĩnh Phúc; đề thi hình thức 100% tự luận với 09 bài toán, thời gian làm bài 120 phút. Trích dẫn Đề thi HSG huyện Toán 8 năm 2022 – 2023 phòng GD&ĐT Tam Dương – Vĩnh Phúc : + Cho a, b, c là độ dài ba cạnh của tam giác ABC thỏa mãn hệ thức a3 + b3 + c3 = 3abc. Hỏi tam giác ABC là tam giác gì? + Hình thang ABCD (AB // CD) có hai đường chéo cắt nhau tại O. Đường thẳng qua O và song song với đáy AB cắt các cạnh bên AD, BC theo thứ tự ở M và N. + Trên tờ giấy kẻ vô hạn các ô vuông và được tô bởi các màu đỏ hoặc xanh thỏa mãn: bất cứ hình chữ nhật nào có kích thước 2×3 thì có đúng hai ô màu đỏ. Hỏi hình chữ nhật có kích thước 2022 x 2023 có bao nhiêu ô màu đỏ.
Đề thi học sinh giỏi Toán 8 năm 2022 - 2023 phòng GDĐT Thiệu Hóa - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi khảo sát chất lượng học sinh giỏi môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Thiệu Hóa, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 21 tháng 02 năm 2023. Trích dẫn đề thi học sinh giỏi Toán 8 năm 2022 – 2023 phòng GD&ĐT Thiệu Hóa – Thanh Hóa : + Cho x, y, z là các số thực dương thỏa mãn: x2 + y2 + z2 + 1/x2 + 1/y2 + 1/z2 = 6. Tính giá trị của biểu thức P = x2021 + y2022 + z2023. + Cho a, b, c là các số nguyên. Chứng minh rằng: a5 + b5 + c5 – (a + b + c) chia hết cho 30. + Cho tứ giác ABCD có B = D = 90° và AB > AD, lấy điểm M trên cạnh AB sao cho AM = AD. Đường thẳng DM cắt BC tại N. Gọi H là hình chiếu của D trên AC, K là hình chiếu của C trên AN. Chứng minh rằng: 1. Chứng minh rằng: AM2 = AH.AC. 2. Chứng minh rằng AHM = AMC và tam giác CDN là tam giác cân. 3. Chứng minh rằng : MHN = MCK.
Đề thi HSG Toán 8 năm 2022 - 2023 trường THCS Cao Xuân Huy - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp trường môn Toán 8 năm học 2022 – 2023 trường THCS Cao Xuân Huy, tỉnh Nghệ An. Trích dẫn Đề thi HSG Toán 8 năm 2022 – 2023 trường THCS Cao Xuân Huy – Nghệ An : + Cho hình vuông ABCD, trên tia đối của tia BA lấy M, trên tia đối của tia CB lấy N sao cho AM = CN a) Chứng minh MDN vuông cân b) Gọi O là giao điểm của 2 đường chéo AC và BD. Gọi K là trung điểm MN. Chứng minh O, C, K thẳng hàng. + Cho tam giác ABC có ba góc nhọn (AB < AC), đường cao AH. Kẻ HD vuông góc với AB (D thuộc AB). Gọi I là trung điểm của AD, trên tia đối của tia BC lấy điểm K sao cho BK = BH. Chứng minh KD vuông góc với HI. + Cho các số nguyên a, b, c, d thỏa mãn: a + b = c + d. Chứng minh a 2 + b 2 + c 2 + d 2 là tổng của ba số chính phương.