Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào lớp 10 lần 3 năm 2022 - 2023 trường THCS Anh Sơn - Nghệ An

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT lần 3 năm học 2022 – 2023 trường THCS Anh Sơn, tỉnh Nghệ An; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi thử Toán vào lớp 10 lần 3 năm 2022 – 2023 trường THCS Anh Sơn – Nghệ An : + Cho hàm số y = ax + b. Tìm a và b để đồ thị của hàm số song song với đường thẳng 3x + y = 5 và cắt trục hoành tại điểm có hoành độ bằng 2. + Giải bài toán bằng cách lập phương trình hoặc lập hệ phương trình: Sau hai năm đóng cửa vì đại dịch Co-vid 19, vào ngày 15/3/2022 ngành du lịch Việt Nam mở cửa hoàn toàn trở lại. Hai thành phố du lịch A và B trong tháng 3/2022 đã chào đón 8,5 triệu lượt khách du lịch. Sang tháng 4/2022 lượt khách du lịch ở thành phố A tăng 20% còn ở thành phố B tăng 15% nên cả hai thành phố đã đón 10 triệu lượt khách du lịch. Hỏi trong tháng 3/2022 mỗi thành phố A và B đã đón bao nhiêu lượt khách du lịch? + Cho BC là một dây cố định của đường tròn (O; R). Điểm A di chuyển trên đường tròn sao cho tam giác ABC có ba góc nhọn. Kẻ đường cao AD của tam giác ABC. Gọi H, K theo thứ tự là hình chiếu vuông góc của D trên AB, AC. a) Chứng minh tứ giác AHDK nội tiếp. b) Kẻ đường kính AQ của đường tròn (O). Chứng minh HK vuông góc với AQ. c) Hạ BE, CF lần lượt vuông góc với AQ (E; F thuộc AQ). Chứng minh rằng tâm đường tròn ngoại tiếp tam giác DEF là một điểm cố định.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh 10 môn Toán năm 2020 - 2021 trường chuyên Lê Quý Đôn - Khánh Hòa
Đề tuyển sinh 10 môn Toán năm 2020 – 2021 trường chuyên Lê Quý Đôn – Khánh Hòa gồm có 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút (không kể thời gian phát đề); kỳ thi được diễn ra ngày 17 tháng 07 năm 2020. Trích dẫn đề tuyển sinh 10 môn Toán năm 2020 – 2021 trường chuyên Lê Quý Đôn – Khánh Hòa : + Cho P(x) = ax2 + bx + c là số nguyên với mọi x là số nguyên. Chứng minh rằng: 2a, b + c, c là các số nguyên. + Cho x, y là các số thực dương và x5 − y3 ≥ 2x. Chứng minh rằng x3 ≥ 2y. + Để xác thực tài khoản của người dùng A, một ứng dụng yêu cầu người đó thiết lập một mật khẩu là một số tự nhiên gồm 3 chữ số và chia hết cho 6, trong đó các chữ số phải lớn hơn 4. Hỏi người dùng A có thể tạo ra bao nhiêu mật khẩu theo yêu cầu trên.
Đề tuyển sinh lớp 10 chuyên môn Toán (chung) năm 2020 - 2021 sở GDĐT Hà Nam
Đề tuyển sinh lớp 10 chuyên môn Toán (chung) năm 2020 – 2021 sở GD&ĐT Hà Nam gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút, kỳ thi được diễn ra ngày … tháng 07 năm 2020. Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán (chung) năm 2020 – 2021 sở GD&ĐT Hà Nam : + Cho hàm số y = ax2 (a khác 0) có đồ thị là parabol như hình vẽ. Xác định hệ số a. + Cho phương trình 12×2 = x + m2 (với m là tham số). Chứng minh phương trình đã cho luôn có hai nghiệm phân biệt x1, x2 với mọi m ∈ R. Tìm các giá trị của m để x1 = p320 − x32. + Cho đường tròn (O), đường kính AB cố định. Điểm H cố định nằm giữa hai điểm A và O sao cho AH < OH. Kẻ dây cung MN vuông góc với AB tại H. Gọi C là điểm tùy thuộc cung lớn MN sao cho C không trùng với M, N và B. Gọi K là giao điểm của AC và MN. 1. Chứng minh tứ giác BCKH nội tiếp. 2. Chứng minh tam giac AMK đồng dạng với tam giác ACM. 3. Cho độ dài đoạn thẳng AH = a. Tính AK.AC − HA.HB theo a . 4. Gọi I là tâm đường tròn ngoại tiếp tam giác MKC. Xác định vị vị trí của điểm C để độ dài đoạn thẳng IN nhỏ nhất.
Đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2020 2021 sở GDĐT Gia Lai
Đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Gia Lai gồm có 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút. Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Gia Lai : + Tìm giá trị của tham số m để hàm số y = (m − 1) x + m2 nghịch biến trên R và đồ thị của nó đi qua điểm M (2; 1). + Cho phương trình x2 − 2(m − 1)x + 2m − 4 = 0 (với m là tham số) có hai nghiệm phân biệt x1; x2. Tìm giá trị của tham số m để x21 + x22 = 3. + Tìm nghiệm nguyên dương của phương trình 2×2 − 8x + 62 = (x − 1)y2 + x2 − 6x + 5.
Đề tuyển sinh lớp 10 chuyên môn Toán (không chuyên) năm 2020 - 2021 sở GDĐT Gia Lai
Đề tuyển sinh lớp 10 chuyên môn Toán (không chuyên) năm 2020 – 2021 sở GD&ĐT Gia Lai gồm có 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút. Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán (không chuyên) năm 2020 – 2021 sở GD&ĐT Gia Lai : + Cho phương trình x2 − 4(m + 1)x + 3m2 + 2m − 5 = 0, với m là tham số. Xác định giá trị của tham số m để phương trình đã cho có hai nghiệm phân biệt x1, x2 sao cho x21 + 4(m + 1)x2 + 3m2 + 2m − 5 = 9. + Quãng đường từ A đến B dài 100 km. Cùng một lúc, một xe máy khởi hành từ A đi đến B và một tô khởi hành từ B đến A. Sau khi hai xe gặp nhau, xe máy đi 1 giờ 30 phút nữa mới đến B. Giả sử vận tốc hai xe không thay đổi trên suốt quãng đường đi. Biết vận tốc của xe máy nhỏ hơn vận tốc của xe tô là 20 km/h. Tính vận tốc của mỗi xe. [ads] + Cho đường tròn tâm O, đường kính AB = 2R. Gọi C là trung điểm của đoạn thẳng OA, qua C kẻ dây cung MN vuông góc với OA. Gọi K là điểm tùy trên cung nhỏ BM (K không trùng với B và M), H là giao điểm của AK và MN. 1. Chứng minh tứ giác BCHK là tứ giác nội tiếp đường tròn. 2. Chứng minh AK.AH = R2. 3. Trên đoạn thẳng KN lấy điểm I sao cho KI = KM. Chứng minh NI = KB.