Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề hàm số bậc nhất và các bài toán liên quan

Nội dung Chuyên đề hàm số bậc nhất và các bài toán liên quan Bản PDF - Nội dung bài viết Chuyên đề hàm số bậc nhất và các bài toán liên quan Chuyên đề hàm số bậc nhất và các bài toán liên quan Tài liệu này bao gồm 64 trang, tổng hợp kiến thức cần nhớ, phân dạng và hướng dẫn giải các dạng bài tập chuyên đề về hàm số bậc nhất và các bài toán liên quan. Đây là tài liệu hữu ích để học sinh nắm vững chương trình Đại số lớp 9 chương 2.1, bao gồm: Nhắc lại và bổ sung các khái niệm về hàm số: Bao gồm các dạng toán lớp 1 như tìm điều kiện xác định của hàm số, dạng toán lớp 2 với việc tính giá trị hàm số khi cho giá trị của ẩn, dạng toán lớp 3 để xác định điểm thuộc (không thuộc) đồ thị hàm số, và dạng toán lớp 4 với sự đồng biến, nghịch biến của hàm số. Hàm số bậc nhất và đồ thị hàm số bậc nhất: Bao gồm các dạng toán lớp 1 với hàm số bậc nhất và sự đồng biến, nghịch biến của hàm số bậc nhất, dạng toán lớp 2 với đồ thị hàm số y = ax và hệ số góc của đường thẳng y = ax, dạng toán lớp 3 với đồ thị hàm số y = ax + b (với a khác 0), và dạng toán lớp 4 với hệ số góc của đường thẳng, đường thẳng song song và đường thẳng cắt nhau. Tổng hợp một số bài toán liên quan đến hàm số bậc nhất trong các đề tuyển sinh vào 10 môn Toán. Đáp án và hướng dẫn giải: Tài liệu cung cấp đáp án và hướng dẫn giải chi tiết cho các bài toán, giúp học sinh hiểu rõ về cách giải các dạng bài tập. Đây là tài liệu hữu ích để học sinh nắm vững nội dung chương trình Đại số và rèn luyện kỹ năng giải bài tập một cách hiệu quả.

Nguồn: sytu.vn

Đọc Sách

Tài liệu Toán 9 chủ đề góc ở tâm và số đo cung
Tài liệu gồm 09 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề góc ở tâm và số đo cung trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Lý thuyết. 1. Góc ở tâm. 2. Số đo cung. 3. So sánh hai cung. 4. Khi nào thì sđ AC + sđ BC = sđ AB. B. Bài tập. Dạng 1 : Tính số đo của góc ở tâm, của cung bị chắn. Cách giải: – Đưa về cách tính số đo một góc của tam giác, tam giác. – Để tính số đo của cung nhỏ, ta tính số đo của góc ở tâm tương ứng. – Để tính số đo của cung lớn ta lấy 3600 trừ đi số đo của cung nhỏ. – Sử dụng tỉ số lượng giác của một góc nhọn để tính góc. – Sử dụng quan hệ giữa đường kính và dây. Dạng 2 : Chứng minh hai cung bằng nhau. Cách giải: Để chứng minh hai cung (của một đường tròn) bằng nhau ta chứng minh hai cung này có cùng một số đo.
Tài liệu Toán 9 chủ đề góc tạo bởi tia tiếp tuyến và dây cung
Tài liệu gồm 11 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề góc tạo bởi tia tiếp tuyến và dây cung trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Lý thuyết. 1. Định nghĩa: + Góc BAx có đỉnh nằm trên đường tròn cạnh Ax là một tia tiếp tuyến còn cạnh AB chứa dây cung AB, góc BAx gọi là góc tạo bởi tiếp tuyến và dây cung. + AnB gọi là cung bị chắn. 2. Định lý: Số đo của góc tạo bởi tia tiếp tuyến và dây cung bằng nửa số đo cung bị chắn. 3. Hệ quả: Trong một đường tròn, góc tạo bởi tia tiếp tuyến và dây cung và góc nội tiếp cùng chắn một cung thì bằng nhau. 4. Định lý bổ sung (Bổ đề): Nếu góc BAx (với đỉnh A nằm trên đường tròn, một cạnh chứa dây cung AB) có số đo bằng nửa số đo của cung AB căng dây đó và cung này nằm bên trong gó đó thì cạnh Ax là một tia tiếp tuyến của đường tròn. B. Bài tập. Dạng 1 : Chứng minh đẳng thức, các góc bằng nhau. Cách giải: Ta áp dụng các kiến thức sau: – Góc tạo bởi tia tiếp tuyến và dây cung và góc nội tiếp cùng chắn một cung thì bằng nhau. – Hai góc kề đáy của tam giác cân thì bằng nhau. – Hai tam giác có hai cặp góc bằng nhau thì cặp góc còn lại cũng bằng nhau. Dạng 2 : Chứng minh hai đường thẳng song song, hai đường thẳng vuông góc, một tia là tiếp tuyến của đường tròn. Cách giải: Sử dụng hệ quả về góc tạo bởi tia tiếp tuyến và dây cung hoặc hệ quả của hia góc nội tiếp.
Tài liệu Toán 9 chủ đề liên hệ giữa cung và dây
Tài liệu gồm 07 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề liên hệ giữa cung và dây trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Lý thuyết. 1. Định lí 1. Với hai cung nhỏ trong một đường tròn hay hai đường tròn bằng nhau, ta có: a) Hai cung bằng nhau căng hai dây bằng nhau. b) Hai dây bằng nhau căng hai cung bằng nhau. 2. Định lí 2. Với hai cung nhỏ trong một đường tròn hay hai đường tròn bằng nhau, ta có: a) Cung lớn hơn căng dây lớn hơn. b) Dây lớn hơn căng cung lớn hơn. 3. Bổ sung. a) Trong một đường tròn, hai cung bị chắn giữa hai dây song song thì bằng nhau. b) Trong một đường tròn, đường kính đi qua điểm chính giữa của một cung thì đi qua trung điểm của dây căng cung ấy. Trong một đường tròn, đường kính đi qua trung điểm của một dây (không đi qua tâm) thì đi qua điểm chính giữa của cung bị căng bởi dây ấy. c) Trong một đường tròn, đường kính đi qua điểm chính giữa của một cung thì vuông góc với dây căng cung ấy và ngược lại. B. Bài tập.
Tài liệu Toán 9 chủ đề tứ giác nội tiếp
Tài liệu gồm 19 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề tứ giác nội tiếp trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Lý thuyết. 1. Định nghĩa: Tứ giác nội tiếp đường tròn là tứ giác có bốn đỉnh nằm trên đường tròn đó. 2. Các tính chất: Cho tứ giác ABCD nội tiếp đường tròn (O), khi đó: – Tổng số đo hai góc đối diện bằng 180 độ. – Nếu một tứ giác có tổng số đo hai góc đối diện bằng 180 độ thì tứ giác đó nội tiếp được đường tròn. 3. Một số dấu hiệu nhận biết tứ giác nội tiếp. – Tứ giác có tổng hai góc đối bằng 180 độ. – Tứ giác có góc ngoài tại một đỉnh bằng góc trong của đỉnh đối diện. – Tứ giác có bốn đỉnh cách đều một điểm cố định (mà ta có thể xác định được). Điểm đó là tâm của đường tròn ngoại tiếp tứ giác. – Tứ giác có hai đỉnh kề cùng nhìn cạnh chứa hai đỉnh còn lại dưới một góc α (dựa vào kiến thức cung chứa góc). B. Bài tập.