Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh lớp 10 môn Toán (chuyên Tin) năm 2021 - 2022 sở GDĐT Hà Nội

Sáng thứ Hai ngày 14 tháng 06 năm 2021, sở Giáo dục và Đào tạo thành phố Hà Nội tổ chức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên Tin) năm học 2021 – 2022. Đề tuyển sinh lớp 10 môn Toán (chuyên Tin) năm 2021 – 2022 sở GD&ĐT Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết, lời giải được trình bày bởi các thành viên CLB Toán Lim: Nguyễn Khang – Nguyễn Văn Hoàng – Đoàn Phương Khang. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên Tin) năm 2021 – 2022 sở GD&ĐT Hà Nội : + Trên bàn có n viên kẹo. Hai bạn An và Bình cùng chơi một trò chơi như sau: Hai bạn luân phiên lấy kẹo trên bàn, mỗi lần chỉ được lấy 1, 2, 3, 4 hoặc 5 viên kẹo và phải lấy số viên kẹo khác với số viên kẹo của bạn còn lại vừa lấy ngay trước đó. Bạn đầu tiên không thể thực hiện được lượt chơi của mình là người thua cuộc. Nếu An là người lấy kẹo trước: 1) Với n = 7, hãy chỉ ra chiến thuật của Bình khiến An là người thua cuộc. 2) Với n = 22, hãy chỉ ra chiến thuật của An khiến Bình là người thua cuộc. + Cho tam giác ABC nội tiếp đường tròn (O) và AB < AC. Gọi I là tâm đường tròn nội tiếp tam giác ABC. Đường thẳng AI cắt đường tròn (O) tại điểm thứ hai M (M khác A). Gọi D, E và F lần lượt là các hình chiếu của điểm I trên các đường thẳng BC, CA và AB. 1) Chứng minh tam giác MBI là tam giác cân. 2) Đường tròn ngoại tiếp tam giác AEF cắt đường tròn (O) tại điểm thứ hai P (P khác A). Chứng minh P, M và D là 3 điểm thẳng hàng. 3) Gọi H là giao điểm của đường thẳng IP và đường thẳng EF. Chứng minh HD song song với AM. + Chứng minh với mỗi số nguyên n, số n2 + 3n + 16 không chia hết cho 25.

Nguồn: toanmath.com

Đọc Sách

Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Bình Định
Nội dung Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Bình Định Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Bình Định Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Bình Định Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 - 2018 môn Toán sở GD và ĐT Bình Định bao gồm 5 bài toán tự luận, với lời giải chi tiết giúp học sinh hiểu rõ từng bước giải quyết vấn đề. Một số bài toán trong đề: Cho đường tròn (T) tâm O đường kính AB, trên tiếp tuyến tại A lấy một điểm P khác A, điểm K thuộc đoạn OB (K khác O và B). Đường thẳng PK cắt đường tròn (T) tại C và D (C nằm giữa P và D), H là trung điểm của CD Chứng minh tứ giác AOHP nội tiếp được đường tròn Kẻ DI song song PO, điểm I thuộc AB, chứng minh góc PDI = góc BAH Chứng minh đẳng thức: PA^2 = PC.PD BC cắt OP tại J, chứng minh AJ//DB Đề thi gồm nhiều bài toán thú vị và đa dạng, giúp học sinh rèn luyện kỹ năng tư duy logic, khả năng suy luận và giải quyết vấn đề một cách hiệu quả.
Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Bình Định
Nội dung Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Bình Định Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT năm học 2017-2018 môn Toán sở GD và ĐT Bình Định Đề thi tuyển sinh THPT năm học 2017-2018 môn Toán sở GD và ĐT Bình Định Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Bình Định bao gồm 6 bài toán tự luận, với lời giải chi tiết. Trong đó, một số bài toán được trích dẫn như sau: 1. Một đám đất hình chữ nhật có chu vi là 24m. Nếu tăng độ dài một cạnh lên 2m và giảm độ dài cạnh còn lại 1m, diện tích đám đất tăng thêm 1m2. Hãy tính độ dài các cạnh ban đầu của đám đất. 2. Cho tam giác ABC (AB < AC) nội tiếp trong đường tròn tâm O. M là điểm nằm trên cung BC không chứa điểm A. Gọi D, E, F lần lượt là hình chiếu của M trên các đường thẳng BC, CA, AB. Chứng minh rằng: a) Bốn điểm M, D, B, F thuộc một đường tròn và bốn điểm M, D, E, C thuộc một đường tròn b) Ba điểm D, E, F thẳng hàng c) BC/MD = CA/ME + AB/MF
Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Đồng Tháp
Nội dung Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Đồng Tháp Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Đồng Tháp Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Đồng Tháp Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 - 2018 môn Toán sở GD và ĐT Đồng Tháp bao gồm 5 bài toán tự luận. Trích một số bài toán trong đề: + Đoàn Thanh Niên Cộng Sản Hồ Chí Minh của một trường tổ chức hội thi Đồng Tháp với các nội dung về hoạt động khởi nghiệp, du lịch, văn hóa đặc trưng, món ăn, cây trái của tỉnh. Ba đội xuất sắc vào thi chung kết, mỗi đội trả lời 12 câu hỏi, mỗi câu đúng được cộng 10 điểm, sai trừ 3 điểm, không trả lời không được điểm. Đội Hoa Sen được 61 điểm, hỏi đội đã trả lời đúng, sai và không trả lời bao nhiêu câu hỏi? + Giáo viên sử dụng công nghệ thông tin, phần mềm biểu diễn để học sinh quan sát hình thang cân. Hình thang ABCD (AB song song với CD) có AB = 30cm, CD = 54cm, và đường cao AH = 9cm. Tính thể tích và diện tích mặt ngoài của hình tạo thành khi quay quanh cạnh đáy CD.
Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Vĩnh Long
Nội dung Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Vĩnh Long Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT chuyên năm học 2017 - 2018 môn Toán sở GD và ĐT Vĩnh Long Đề thi tuyển sinh THPT chuyên năm học 2017 - 2018 môn Toán sở GD và ĐT Vĩnh Long Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 - 2018 môn Toán sở GD và ĐT Vĩnh Long bao gồm 6 bài toán tự luận. Trong đó, có một bài toán về tam giác nhọn ABC nội tiếp đường tròn (O;R) và các đường cao AD, BM, CN cắt nhau tại H. Bài toán được phân thành các phần sau: Chứng minh rằng AM.AC = AN.AB. Chứng minh rằng OA vuông góc với MN. Gọi P là giao điểm của hai đường thẳng MN và BC. Đường thẳng đi qua N và song song với AC cắt AP, AD lần lượt tại I, G. Chứng minh rằng NI = NG. Bài toán này đòi hỏi học sinh phải áp dụng kiến thức về định lí và tính chất của tam giác nội tiếp, đường cao và đường trung trực để giải quyết các vấn đề được đưa ra. Việc làm bài toán này không chỉ giúp học sinh rèn luyện khả năng phán đoán, suy luận mà còn giúp họ hiểu sâu hơn về mối quan hệ giữa các yếu tố trong tam giác.