Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG lớp 11 môn Toán năm 2019 2020 trường Nguyễn Quán Nho Thanh Hóa

Nội dung Đề thi HSG lớp 11 môn Toán năm 2019 2020 trường Nguyễn Quán Nho Thanh Hóa Bản PDF Nhằm tuyển chọn và bồi dưỡng đội tuyển học sinh giỏi môn Toán lớp 11 của nhà trường, chuẩn bị tham dự kỳ thi học sinh giỏi Toán lớp 11 cấp tỉnh, vừa qua, trường THPT Nguyễn Quán Nho – Thanh Hóa đã tổ chức kỳ thi chọn HSG Toán lớp 11 năm học 2019 – 2020. Đề thi HSG Toán lớp 11 năm 2019 – 2020 trường Nguyễn Quán Nho – Thanh Hóa gồm có 01 trang với 05 bài toán, học sinh có 180 phút để làm bài, đề thi có lời giải chi tiết. Trích dẫn đề thi HSG Toán lớp 11 năm 2019 – 2020 trường Nguyễn Quán Nho – Thanh Hóa : + Xung quanh bờ ao của gia đình bác Nam trồng 20 cây chuối. Do không còn phù hợp bác muốn thay thế để trồng bưởi, lần đầu bác chặt ngẫu nhiên 4 cây. Tính xác suất để trong 4 cây bác Nam chặt không có hai cây nào gần nhau. [ads] + Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có ba góc đều nhọn và nội tiếp đường tròn tâm I. Gọi K là hình chiếu vuông góc của B trên đường thẳng AC, H là hình chiếu vuông góc của C trên đường thẳng BI. Các đường thẳng AC và KH lần lượt có phương trình là x + y + 1 = 0 và x + 2y – 1 = 0. Biết điểm B thuộc đường thẳng y – 5 = 0 và điểm I thuộc đường thẳng x + 1 = 0. Tìm tọa độ điểm C. + Cho tứ diện OABC có ba cạnh OA, OB, OC đôi một vuông góc với nhau tại O. Gọi H là hình chiếu vuông góc của O lên mặt phẳng (ABC) và P là điểm bất kỳ trong tam giác ABC. Chứng minh: PA^2/OA^2 + PB^2/OB^2 + PC^2/OC^2 = 2 + PH^2/OH^2. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn HSG tỉnh lớp 11 môn Toán năm 2017 – 2018 sở GD ĐT Quảng Bình
Nội dung Đề thi chọn HSG tỉnh lớp 11 môn Toán năm 2017 – 2018 sở GD ĐT Quảng Bình Bản PDF Ngày 22 tháng 03 năm 2018, sở Giáo dục và Đào tạo tỉnh Quảng Bình tổ chức kỳ thi chọn học sinh giỏi tỉnh môn Toán lớp 11 THPT năm học 2017 – 2018. Đề thi chọn HSG tỉnh Toán lớp 11 năm 2017 – 2018 sở GD&ĐT Quảng Bình gồm 01 trang với 05 bài toán, thời gian làm bài 180 phút, đề thi có hướng dẫn chấm. Trích dẫn đề thi chọn HSG tỉnh Toán lớp 11 năm 2017 – 2018 sở GD&ĐT Quảng Bình : + Một hộp đựng chín quả cầu được đánh số từ 1 đến 9. Hỏi phải lấy ra ít nhất bao nhiêu quả cầu để xác suất có ít nhất một quả cầu ghi số chia hết cho 4 phải lớn hơn 5/6. [ads] + Tìm tất cả các số nguyên dương n sao cho 3^2n + 3n^2 + 7 là một số chính phương. + Cho hình hộp ABCD.A’B’C’D’. Gọi G là trọng tâm của tam giác BC’D. a. Xác định thiết diện của hình hộp ABCD.A’B’C’D’ khi cắt bởi mặt phẳng (ABG). Thiết diện đó là hình gì? b. Hai điểm M, N lần lượt thuộc hai đoạn thẳng AD, A’C sao cho MN song song với mặt phẳng (BC’D), biết AM = 1/4.AD. Tính tỉ số CN/CA’.
Đề thi chọn HSG tỉnh lớp 11 môn Toán THPT năm 2017 2018 sở GD và ĐT Nghệ An (Bảng A)
Nội dung Đề thi chọn HSG tỉnh lớp 11 môn Toán THPT năm 2017 2018 sở GD và ĐT Nghệ An (Bảng A) Bản PDF Đề thi chọn HSG tỉnh Toán lớp 11 THPT năm 2017 – 2018 sở GD và ĐT Nghệ An (Bảng A) gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 150 phút (không kể thời gian giao đề), kỳ thi được tổ chức vào chiều ngày 16 tháng 03 năm 2018, đề thi HSG Toán lớp 11 có lời giải chi tiết . Trích dẫn đề thi chọn HSG tỉnh Toán lớp 11 THPT : + Trong mặt phẳng với hệ tọa độ Oxy, cho hình bình hành ABCD. Hình chiếu vuông góc của điểm D lên các đường thẳng AB, BC lần lượt là M(-2; 2), N(2; -2); đường thẳng BD có phương trình 3x – 5y + 1 = 0. Tìm tọa độ điểm A. + Một hộp chứa 17 quả cầu đánh số từ 1 đến 17. Lấy ngẫu nhiên đồng thời 3 quả cầu. Tính xác suất sao cho tổng các số ghi trên 3 quả cầu đó là một số chẵn. [ads] + Cho hình chóp S.ABCD, có đáy là hình thoi cạnh a, SA = SB = SC = a. Đặt SD = x (0 < x < a√3). a) Tính góc giữa đường thẳng SB và mặt phẳng (ABCD), biết rằng x = a. b) Tìm x theo a để tích AC.SD đạt giá trị lớn nhất.
Đề thi Olympic lớp 11 môn Toán năm 2017 2018 cụm trường Thanh Xuân Cầu Giấy Hà Nội
Nội dung Đề thi Olympic lớp 11 môn Toán năm 2017 2018 cụm trường Thanh Xuân Cầu Giấy Hà Nội Bản PDF Đề thi Olympic Toán lớp 11 năm 2017 – 2018 cụm trường Thanh Xuân & Cầu Giấy – Hà Nội gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 150 phút, đề thi nhằm tuyển chọn các em học sinh giỏi môn Toán khối 11, đề thi có lời giải chi tiết . Trích dẫn đề thi Olympic Toán lớp 11 năm 2017 – 2018 : + Một đoàn tàu có 6 toa ở sân ga, trên sân ga có 6 hành khách chuẩn bị lên tàu, mỗi người độc lập với nhau và chọn toa tàu một cách ngẫu nhiên. a. Hỏi có bao nhiêu cách xếp 6 hành khách lên các toa tàu đó sao cho 6 người cùng lên một toa hoặc mỗi người lên một toa khác nhau? b. Tính xác suất sao cho một toa có 3 hành khách, một toa có 2 hành khách, 1 toa có 1 hành khách, còn 3 toa còn lại không có ai lên. [ads] + Biết rằng các số x, 2y – x, x + 2y theo thứ tự lập thành cấp số cộng. Đồng thời các số 1, y – 1, x + 2y – 1 theo thứ tự lập thành cấp số nhân. Hãy tìm x, y. + Xét khai triển (x + 1/x)^n (x ≠ 0, n ≥ 3, n ∈ N*). Biết tích của số hạng thứ tư tính từ phải sang và số hạng thứ tư kể từ trái sang bằng 14400. Tìm n.