Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề số chính phương

Số chính phương được định nghĩa là số bằng bình phương của một số nguyên. Cũng như số nguyên tố, thì bài toán về số chính phương cũng là dạng bài thường gặp trong chương trình Toán học lớp 6 – 7, dành cho học sinh giỏi Toán bậc THCS. Nhằm giúp các em có thể tìm hiểu các dạng toán về số chính phương, THCS. giới thiệu đến các em tài liệu chuyên đề số chính phương. Tài liệu gồm 63 trang giới thiệu 04 dạng toán về số chính phương thường gặp, cùng với đó là phương pháp giải, ví dụ mẫu và bài tập vận dụng (có lời giải chi tiết). Khái quát nội dung tài liệu chuyên đề số chính phương: A. Kiến thức cần nhớ 1. Định nghĩa số chính phương. 2. Một số tính chất cần nhớ. B. Các dạng toán thường gặp Dạng 1 : Chứng minh một số là số chính phương, hoặc là tổng nhiều số chính phương. Cơ sở phương pháp: Để chứng minh một số n là số là số chính phương ta thường dựa vào định nghĩa. [ads] Dạng 2 : Chứng minh một số không là số chính phương. Cơ sở phương pháp: Để chứng minh n không là số chính phương, tùy vào từng bài toán ta có thể sử dụng các cách sau: + Phương pháp 1. Chứng minh n không thể viết được dưới dạng một bình phương một số nguyên. + Phương pháp 2. Chứng minh k2 < n < (k + 1)2 với k là số nguyên. + Phương pháp 3. Chứng minh n có tận cùng là 2; 3; 7; 8. + Phương pháp 4. Chứng minh n có dạng 4k + 2; 4k + 3. + Phương pháp 5. Chứng minh n có dạng 3k + 2. + Phương pháp 6. Chứng minh n chia hết cho số nguyên tố p mà không chia hết cho p2. Dạng 3 : Điều kiện để một số là số chính phương. Cơ sở phương pháp: Chúng ta thường sử dụng các phương pháp sau: + Phương pháp 1: Sử dụng định nghĩa. + Phương pháp 2: Sử dụng tính chẵn, lẻ. + Phương pháp 3: Sử dụng tính chất chia hết và chia có dư. + Phương pháp 4: Sử dụng các tính chất. Dạng 4 : Tìm số chính phương. Cơ sở phương pháp: Dựa vào định nghĩa về số chính phương A = k2 với k là số nguyên và các yêu cầu của bài toán để tìm ra số chính phương thỏa bài toán.

Nguồn: toanmath.com

Đọc Sách

5 chủ đề ôn thi tuyển sinh vào môn Toán Lê Văn Hưng
Nội dung 5 chủ đề ôn thi tuyển sinh vào môn Toán Lê Văn Hưng Bản PDF - Nội dung bài viết Tài liệu ôn thi Toán lớp 10 của thầy Lê Văn Hưng Tài liệu ôn thi Toán lớp 10 của thầy Lê Văn Hưng Tài liệu được soạn bởi thầy giáo Lê Văn Hưng, tập hợp 5 chủ đề ôn thi tuyển sinh vào lớp 10 môn Toán, bao gồm 182 trang đầy đủ kiến thức cần thiết từ lý thuyết đến các dạng bài tập thực hành. Trước mỗi chủ đề, tài liệu tổng hợp và tóm tắt những khái niệm quan trọng mà học sinh cần hiểu rõ, cung cấp hướng dẫn cụ thể cho việc giải các dạng bài tập phổ biến. Bên cạnh đó, tài liệu cũng chọn lọc và biên soạn các bài tập tự luyện từ các đề thi tuyển sinh vào lớp 10 của sở GD&ĐT Hà Nội. Đây thực sự là nguồn tài liệu hữu ích và chuẩn bị tốt cho học sinh chuẩn bị bước vào kỳ thi tuyển sinh quan trọng. Nhờ tài liệu của thầy Lê Văn Hưng, học sinh có thể tự tin hơn trong việc ôn luyện và đạt kết quả cao trong kỳ thi sắp tới.
Phân tích bình luận 111 bài toán bất đẳng thức Nguyễn Công Lợi
Nội dung Phân tích bình luận 111 bài toán bất đẳng thức Nguyễn Công Lợi Bản PDF - Nội dung bài viết Phân tích bình luận 111 bài toán bất đẳng thức của Nguyễn Công Lợi Phân tích bình luận 111 bài toán bất đẳng thức của Nguyễn Công Lợi Trên 98 trang tài liệu của tác giả Nguyễn Công Lợi, chúng ta được đưa vào thế giới của những bài toán bất đẳng thức phức tạp và thú vị. Tác giả không chỉ tuyển chọn những bài toán hay mà còn hướng dẫn chúng ta qua quá trình phân tích từng bước một để tìm ra lời giải cho chúng. Qua việc giải các bài toán này, chúng ta có cơ hội hiểu rõ hơn về cách phân tích các giả thiết và bất đẳng thức trong bài toán, từ đó đưa ra nhận định chính xác và hướng dẫn cho việc giải bài toán. Điều này không chỉ giúp chúng ta rèn luyện tư duy logic mà còn giúp chúng ta cải thiện kỹ năng giải quyết vấn đề. Tài liệu này không chỉ là một công cụ hữu ích để rèn luyện kiến thức mà còn là nguồn cảm hứng để chúng ta không ngừng trau dồi và phát triển khả năng tư duy toán học của mình. Đây thực sự là một tài liệu không thể thiếu đối với những ai đam mê toán học và mong muốn thách thức bản thân mình với những bài toán đầy tính chất khó khăn.
Chuyên đề phương trình nghiệm nguyên
Nội dung Chuyên đề phương trình nghiệm nguyên Bản PDF - Nội dung bài viết Bài toán phương trình nghiệm nguyên: một bài toán quen thuộc trong toán học Bài toán phương trình nghiệm nguyên: một bài toán quen thuộc trong toán học Phương trình nghiệm nguyên là một dạng bài toán mà chúng ta thường gặp trong toán học. Để giải quyết bài toán này, chúng ta cần tìm ra giá trị nguyên của biến số trong phương trình. Dạng bài toán này không chỉ giúp chúng ta rèn luyện kỹ năng tính toán mà còn khuyến khích sự logic và suy luận. Khi giải phương trình nghiệm nguyên, chúng ta cần xác định giá trị nguyên của biến số sao cho phương trình được thỏa mãn. Điều này đòi hỏi chúng ta phải áp dụng các kỹ thuật tính toán, quy tắc và phương pháp giải bài toán một cách chính xác và logic. Bài toán phương trình nghiệm nguyên không chỉ giúp chúng ta hiểu rõ hơn về khái niệm của phương trình mà còn giúp chúng ta phát triển kỹ năng giải quyết vấn đề một cách tỉ mỉ và chính xác. Đồng thời, thông qua việc giải bài toán này, chúng ta cũng có thể áp dụng kiến thức vào các bài toán thực tế khác.
Chuyên đề số chính phương
Nội dung Chuyên đề số chính phương Bản PDF - Nội dung bài viết Số chính phương - một khái niệm cơ bản trong toán học Số chính phương - một khái niệm cơ bản trong toán học Số chính phương là số mà có thể được biểu diễn dưới dạng bình phương của một số nguyên. Ví dụ, 0, 1, 4, 9, 16, ... là các số chính phương vì chúng có thể được viết dưới dạng bình phương của một số nguyên. Số chính phương là một khái niệm quan trọng trong toán học và được sử dụng trong nhiều lĩnh vực khác nhau như trong số học, lý thuyết số, đại số và hình học.