Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tuyển tập 20 năm đề thi tuyển sinh vào lớp 10 môn Toán sở GDĐT Bình Định

Tài liệu gồm 32 trang, được tổng hợp bởi các tác giả: Đào Xuân Luyện, Huỳnh Duy Thủy, Nguyễn Công Nhã, Nguyễn Duy Chiến, Trần Văn Chớ, Cao Hoàng Hạ, Trần Đức An, tuyển tập đề thi tuyển sinh vào lớp 10 môn Toán của sở Giáo dục và Đào tạo tỉnh Bình Định trong vòng 20 năm gần đây, từ năm học 2000 – 2001 đến năm học 2019 – 2020. 1. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2000 – 2001 sở GD&ĐT Bình Định. 2. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2001 – 2002 sở GD&ĐT Bình Định. 3. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2002 – 2003 sở GD&ĐT Bình Định. 4. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2003 – 2004 sở GD&ĐT Bình Định. 5. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2004 – 2005 sở GD&ĐT Bình Định. 6. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2005 – 2006 sở GD&ĐT Bình Định. 7. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2006 – 2007 sở GD&ĐT Bình Định. 8. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2007 – 2008 sở GD&ĐT Bình Định. 9. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2008 – 2009 sở GD&ĐT Bình Định. [ads] 10. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2009 – 2010 sở GD&ĐT Bình Định. 11. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2010 – 2011 sở GD&ĐT Bình Định. 12. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2011 – 2012 sở GD&ĐT Bình Định. 13. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2012 – 2013 sở GD&ĐT Bình Định. 14. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2013 – 2014 sở GD&ĐT Bình Định. 15. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2014 – 2015 sở GD&ĐT Bình Định. 16. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2015 – 2016 sở GD&ĐT Bình Định. 17. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2016 – 2017 sở GD&ĐT Bình Định. 18. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2017 – 2018 sở GD&ĐT Bình Định. 19. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2018 – 2019 sở GD&ĐT Bình Định. 20. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2019 – 2020 sở GD&ĐT Bình Định.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 - 2024 sở GDĐT Yên Bái
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán (chuyên) năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Yên Bái; kỳ thi được diễn ra vào ngày 02 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 – 2024 sở GD&ĐT Yên Bái : + Trong mặt phẳng tọa độ Oxy, cho parabol (P): y = x2 và đường thẳng (d): y = 2x – m – 2. Tìm tất cả các giá trị của tham số m để (d) cắt (P) tại hai điểm phân biệt lần lượt có hoành độ x1, x2 thỏa mãn x12 + 1 = 2×2. + Cho tam giác ABC nhọn nội tiếp đường tròn tâm O, các đường cao AD, BE, CF (D thuộc BC, E thuộc CA, F thuộc AB). Tiếp tuyến tại A của đường tròn (O) cắt DF tại M, MC cắt (O) tại I khác C, IB cắt MD tại N. a) Chứng minh rằng MA // EF. b) Chứng minh rằng MAF cân, tứ giác AINF nội tiếp. c) Chứng minh rằng MA2 = MN.MD. d) Gọi K là giao điểm của CF và đường tròn (O). Chứng minh rằng A, N, K thẳng hàng. + Cho một đa giác đều có 23 đỉnh. Tô màu các đỉnh của đa giác bằng một trong hai màu xanh hoặc đỏ. Chứng minh rằng luôn tồn tại ba đỉnh của đa giác được tô cùng màu và tạo thành một tam giác cân.
Đề tuyển sinh lớp 10 chuyên môn Toán năm 2023 - 2024 sở GDĐT Lào Cai
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT chuyên môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Lào Cai; kỳ thi được diễn ra vào Chủ Nhật ngày 04 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh lớp 10 chuyên môn Toán năm 2023 – 2024 sở GD&ĐT Lào Cai : + Gieo một con súc sắc cân đối và đồng chất hai lần liên tiếp. Tính xác suất sao cho tổng số chấm trên mặt xuất hiện của con súc sắc trong hai lần gieo không lớn hơn 6. + Lúc 7 giờ 30 phút hai xe ô tô cùng xuất phát từ A đến B với vận tốc của mỗi xe không thay đổi trên cả quãng đường. Xe thứ hai đến B sớm hơn xe thứ nhất đúng 1 giờ. Lúc quay trở về, xe thứ nhất tăng vận tốc thêm 5km/h, xe thứ hai vẫn giữ nguyên vận tốc như lúc đi nhưng dừng ở trạm nghỉ 36 phút, do đó xe thứ hai về đến A cùng lúc với xe thứ nhất. Biết rằng quãng đường từ A đến B là 180 km. Hỏi lúc đi, xe thứ nhất đến B lúc mấy giờ? + Số nguyên dương m được gọi là số tốt nếu tổng các bình phương của tất cả các ước dương của nó (không tính 1 và m) bằng 6m + 8. Chứng minh rằng nếu có hai số nguyên tố p, q phân biệt và thỏa mãn pq là số tốt thì pq + 2 là số chính phương.
Đề tuyển sinh vào lớp 10 môn Toán năm 2023 - 2024 sở GDĐT An Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh An Giang; kỳ thi được diễn ra vào ngày 03 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh vào lớp 10 môn Toán năm 2023 – 2024 sở GD&ĐT An Giang : + Cho phương trình bậc hai x2 – 2mx + 2m – 3 = 0 (m là tham số). a. Giải phương trình khi m = 0,5. b. Tìm m để phương trình có hai nghiệm trái dấu. + Cho tam giác ABC (AB < AC) nội tiếp trong đường tròn (O) tâm O đường kính BC, đường thẳng qua O vuông góc với BC cắt AC tại D. a. Chứng minh rằng tứ giác ABOD nội tiếp. b. Tiếp tuyến tại điểm A với đường tròn (O) cắt đường thẳng BC tại điểm P, cho PB = BO = 2cm. Tính độ dài đoạn PA và số đo góc APC. + Cây bạch đàn mỗi năm cao thêm 1m, cây phượng mỗi năm cao thêm 50cm. Lúc mới vào trường học, cây bạch đàn cao 1m và cây phượng cao 3m. Giả sử rằng tốc độ tăng trưởng chiều cao của hai loại cây không đổi qua các năm. a. Viết hàm số biểu diễn chiều cao mỗi loại cây theo số năm tính từ lúc mới vào trường. b. Sau bao nhiêu năm so với lúc mới vào trường thì cây bạch đàn sẽ cao hơn cây phượng?
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 - 2024 sở GDĐT Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Ninh Bình; kỳ thi được diễn ra vào ngày 03 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 – 2024 sở GD&ĐT Ninh Bình : + Cho tam giác ABC nhọn, không cân, nội tiếp đường tròn (O). Gọi E là điểm đối xứng của B qua AC và F điểm đối xứng của C qua AB. Đường thẳng BE cắt đường thẳng CF tại H. a) Chứng minh các tứ giác AHBF và AHCE là tứ giác nội tiếp. b) Đường tròn ngoại tiếp các tam giác ABE và ACF cắt nhau tại điểm thứ hai là D. Chứng minh F, B, D thẳng hàng và DA là tia phân giác của góc EDF. c) Gọi P, Q lần lượt là tâm đường tròn ngoại tiếp các tam giác ABE, ACF. Chứng minh sáu điểm B, C, D, O, P, Q cùng thuộc một đường tròn tâm I và giao điểm (khác D) của đường thẳng AD với đường tròn (I) là trực tâm tam giác APQ. d) Giả sử H thuộc đường tròn (I). Chứng minh các đường thẳng AI, DH, BC, PQ đồng quy. + Cho p là một số nguyên tố. a) Chứng minh nếu p lẻ và tồn tại số nguyên x sao cho (x + 1) chia hết cho p thì (p – 1) chia hết cho 4. Chứng minh 2023p + 23^p – 24 không là số chính phương. + Người ta tô màu mỗi điểm trên mặt phẳng bởi một trong hai màu đỏ hoặc xanh. Chứng minh: a) Tồn tại một tam giác vuông cân có ba đỉnh được tô cùng màu. b) Tồn tại một tam giác vuông có cạnh huyền bằng 2, một cạnh góc vuông bằng 1 và ba đỉnh được tô cùng màu.