Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề Olympic Toán 8 năm 2018 - 2019 phòng GDĐT TX Thái Hòa - Nghệ An

THCS. giới thiệu đến các em học sinh lớp 8 đề Olympic Toán 8 năm 2018 – 2019 phòng GD&ĐT TX Thái Hòa – Nghệ An, nhằm giao lưu và tuyển chọn các em học sinh giỏi Toán 8 đang học tập tại các trường THCS trên địa bàn Thị xã Thái Hòa, tỉnh Nghệ An. Đề Olympic Toán 8 năm 2018 – 2019 phòng GD&ĐT TX Thái Hòa – Nghệ An được biên soạn theo hình thức tự luận với 05 bài toán, học sinh làm bài trong 90 phút. Trích dẫn đề Olympic Toán 8 năm 2018 – 2019 phòng GD&ĐT TX Thái Hòa – Nghệ An : + Cho tam giác ABC vuông tại A, có trung tuyến AM, đường cao AH. Trên cùng nửa mặt phẳng bờ BC kẻ hai tia Ax và Cy cùng vuông góc với BC. Qua A kẻ đường thẳng vuông góc với AM cắt Bx và Cy lần lượt tại P và Q. Chứng minh: a) AP = BP và AQ = CQ. b) PC đi qua trung điểm I của AH. c) Khi BC cố định, BC = 2a, điểm A chuyển động sao cho BAC = 90°. Tìm vị trí điểm H trên đoạn thẳng BC để diện tích tam giác ABH đạt giá trị lớn nhất, tìm giá trị lớn nhất đó. [ads] + Cho phân thức: P = (n^3 + 2n^2 – 1)/(n^3 + 2n^2 + 2n + 1). a) Hãy tình điều kiện xác định và rút gọn phân thức trên. b) Chứng minh rằng nếu n là một số nguyên thì giá trị phân thức tìm được trong câu a luôn là một phân số tối giản. + Tìm đa thức f(x) biết: f(x) chia cho x – 2 dư 5; f(x) chia cho x – 3 dư 7; f(x) chia cho (x – 2)(x – 3) được thương là x^2 -1 và đa thức dư là đa thức bậc nhất đối với x.

Nguồn: toanmath.com

Đọc Sách

Đề HSG Toán 8 cấp huyện năm 2022 - 2023 phòng GDĐT Đoan Hùng - Phú Thọ
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi môn Toán 8 THCS cấp huyện năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Đoan Hùng, tỉnh Phú Thọ; đề thi hình thức 40% trắc nghiệm + 60% tự luận, thời gian làm bài 120 phút (không kể thời gian giao đề); đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề HSG Toán 8 cấp huyện năm 2022 – 2023 phòng GD&ĐT Đoan Hùng – Phú Thọ : + Cho hình vuông ABCD trên cạnh AB lấy điểm E, trên cạnh BC lấy điểm F sao cho AE BF. Kẻ DM vuông góc với EC tại M. a) Chứng minh rằng DM F thẳng hàng. b) Tìm số đo góc BMD khi AE BE. c) Khi E di chuyển trên AB và vẫn luôn thỏa mãn AE BF tìm vị trí của E để diện tích tam giác DEF là nhỏ nhất? + Một rô bốt chuyển động từ A đến B theo cách sau: đi được 5m dừng lại 1 giây, rồi đi tiếp 10m dừng lại 2 giây, rồi đi tiếp 15m dừng lại 3 giây. Cứ như vậy đi từ A đến B hết tất cả thời gian đi và dừng lại là 551 giây. Biết rằng rô bốt luôn chuyển động với vận tốc 2,5m/giây. Khoảng cách từ A đến B dài bao nhiêu mét? + Một hình chữ nhật có chu vi bằng 132m. Nếu tăng chiều dài thêm 8m và giảm chiều rộng đi 4m thì diện tích hình chữ nhật tăng thêm 2 52m. Chiều dài của hình chữ nhật là?
Đề học sinh giỏi Toán 8 năm 2022 - 2023 phòng GDĐT Bình Lục - Hà Nam
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề kiểm tra chất lượng học sinh giỏi cấp huyện môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Bình Lục, tỉnh Hà Nam; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 8 năm 2022 – 2023 phòng GD&ĐT Bình Lục – Hà Nam : + Cho biểu thức A. a) Rút gọn biểu thức A. b) Tính giá trị của biểu thức A tại x thỏa mãn |x + 1| = |−1|. c) Tìm giá trị nguyên của x để biểu thức A có giá trị nguyên. + Cho hình vuông ABCD có độ dài cạnh bằng a, M là một điểm bất kì trên cạnh BC. Tia Ax vuông góc với AM cắt đường thẳng CD tại K. Gọi I là trung điểm của MK. Tia AI cắt đường thẳng CD tại E. Đường thẳng qua M song song với AB cắt AI tại N. a) Tứ giác MNKE là hình gì? Vì sao? b) Chứng minh AM2 = KC. KE. c) Chứng minh chu vi tam giác MEC không đổi khi M di động trên cạnh BC. d) Gọi F là giao điểm của AM với đường thẳng DC. Chứng minh 1/AF2 + 1/AM2 không phụ thuộc vào vị trí điểm M. + Hai vòi nước cùng chảy vào một bể không có nước sau 4 giờ thì đầy bể. Người ta mở 2 vòi chảy trong 2 giờ, sau đó tắt vòi 1 đi, vòi 2 chảy tiếp trong 3 giờ nữa thì bể đầy. Hỏi mỗi vòi chảy một mình trong bao lâu thì đầy bể.
Đề học sinh giỏi Toán 8 năm 2022 - 2023 phòng GDĐT Can Lộc - Hà Tĩnh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi giao lưu học sinh giỏi cấp trường môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Can Lộc, tỉnh Hà Tĩnh; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 8 năm 2022 – 2023 phòng GD&ĐT Can Lộc – Hà Tĩnh : + Có 8 đội bóng được vào chung kết giải bóng chuyền học sinh THCS của huyện Can Lộc năm 2023. Hỏi nếu tổ chức thi đấu vòng tròn một lượt (2 đội bất kỳ chỉ gặp nhau 1 trận) để tính điểm thì có tất cả bao nhiêu trận đấu? + Cho tam giác ABC có M là trung điểm của AC. AD, BM, CE đồng quy tại K (D thuộc BC, E thuộc AB và K nằm trong tam giác ABC). Biết diện tích tam giác AKE bằng 10 2 cm, diện tích tam giác BKE bằng 20 2 cm. Tính diện tích tam giác ABC. + Cho điểm O nằm trong tam giác ABC, các tia AO, BO, CO cắt các cạnh BC, CA, AB của tam giác theo thứ tự tại D, E, F. Tìm vị trí điểm O để OA OB OC P OD OE OF có giá trị nhỏ nhất, tìm giá trị nhỏ nhất đó?
Đề giao lưu HSG Toán 8 năm 2022 - 2023 phòng GDĐT Vĩnh Bảo - Hải Phòng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề giao lưu học sinh giỏi cấp huyện môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Vĩnh Bảo, thành phố Hải Phòng; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề giao lưu HSG Toán 8 năm 2022 – 2023 phòng GD&ĐT Vĩnh Bảo – Hải Phòng : + Cho hình chữ nhật ABCD. Vẽ BH vuông góc với AC (H AC). Gọi M là trung điểm của AH, K là trung điểm của CD. Chứng minh rằng: BM ⊥ MK. + Cho tam giác ABC nhọn AB < AC, ba đường cao AD, BE, CF của tam giác ABC cắt nhau tại H. a/ Chứng minh:Tam giác AEF đồng dạng với tam giác ABC và FC là tia phân giác của góc EFD. b/ Hai đường thẳng EF và CB cắt nhau tại M. Từ B kẻ đường thẳng song song với AC cắt AM tại I; cắt AD tại K. Chứng minh rằng: B là trung điểm của IK. + Cho 2023 số tự nhiên bất kỳ: a1; a2; …; a2023. Chứng minh rằng tồn tại một số hoặc tổng một số các số trong dãy trên chia hết cho 2023.